arXiv:1805.02707v4 [cs.CR] 19 Feb 2019

A Survey on Consensus Mechanisms and Mining
Strategy Management in Blockchain Networks

Wenbo Wang, Member, IEEE, Dinh Thai Hoang, Member, IEEE, Peizhao Hu, Member, IEEE, Zehui
Xiong, Student Member, IEEE, Dusit Niyato, Fellow, IEEE, Ping Wang, Senior Member, IEEE Yonggang
Wen, Senior Member, IEEE and Dong In Kim, Fellow, IEEE

Abstract—The past decade has witnessed the rapid evolution
in blockchain technologies, which has attracted tremendous
interests from both the research communities and industries. The
blockchain network was originated from the Internet financial
sector as a decentralized, immutable ledger system for transac-
tional data ordering. Nowadays, it is envisioned as a powerful
backbone/framework for decentralized data processing and data-
driven self-organization in flat, open-access networks. In partic-
ular, the plausible characteristics of decentralization, immutabil-
ity and self-organization are primarily owing to the unique
decentralized consensus mechanisms introduced by blockchain
networks. This survey is motivated by the lack of a comprehensive
literature review on the development of decentralized consensus
mechanisms in blockchain networks. In this survey, we provide a
systematic vision of the organization of blockchain networks. By
emphasizing the unique characteristics of incentivized consensus
in blockchain networks, our in-depth review of the state-of-
the-art consensus protocols is focused on both the perspective
of distributed consensus system design and the perspective of
incentive mechanism design. From a game-theoretic point of
view, we also provide a thorough review on the strategy adoption
for self-organization by the individual nodes in the blockchain
backbone networks. Consequently, we provide a comprehensive
survey on the emerging applications of the blockchain networks
in a wide range of areas. We highlight our special interest in how
the consensus mechanisms impact these applications. Finally, we
discuss several open issues in the protocol design for blockchain
consensus and the related potential research directions.

Index Terms—Blockchain, permissionless consensus, Byzantine
fault tolerance, mining, incentive mechanisms, game theory, P2P
networks.

I. INTRODUCTION

In the past decade, blockchain networks have gained tremen-
dous popularity for their capabilities of distributively provid-
ing immutable ledgers as well as platforms for data-driven
autonomous organization. Proposed by the famous grassroot
cryptocurrency project “Bitcoin” [1], the blockchain network
was originally adopted as the backbone of a public, distributed
ledger system to process asset transactions in the form of

Wenbo Wang, Zehui Xiong, Dusit Niyato and Yonggang Wen are
with the School of Computer Science and Engineering, Nanyang Tech-
nological University, Singapore 639798 (email: wbwang@ntu.edu.sg, zx-
iong002@e.ntu.edu.sg, dniyato@ntu.edu.sg, ygwen@ntu.edu.sg).

Dinh Thai Hoang is with the Faculty of Engineering and Information
Technology, University of Technology Sydney, NSW 2007, Australia (e-mail:
hoang.dinh@uts.edu.au).

Peizhao Hu is with the Department of Computer Science, Rochester
Institute of Technology, Rochester, NY, USA 14623 (email: ph@cs.rit.edu).

Ping Wang is with the Department of Electrical Engineering & Computer
Science, Lassonde School of Engineering, York University, 4700 Keele St.,
LAS 2016 Toronto, ON M3J 1P3, Canada (email: pingw@yorku.ca).

Dong In King is wit the School of Information and Communica-
tion Engineering, Sungkyunkwan University, Suwon 16419, Korea (e-mail:
dikim@skku.ac.kr).

digital tokens between Peer-to-Peer (P2P) users. Blockchain
networks, especially those adopting open-access policies, are
distinguished by their inherent characteristics of disinterme-
diation, public accessibility of network functionalities (e.g.,
data transparency) and tamper-resilience [2]. Therefore, they
have been hailed as the foundation of various spotlight Fin-
Tech applications that impose critical requirement on data
security and integrity (e.g., cryptocurrencies [3], [4]). Further-
more, with the distributed consensus provided by blockchain
networks, blockchains are fundamental to orchestrating the
global state machind] for general-purpose bytecode execution.
Therefore, blockchains are also envisaged as the backbone
of the emerging open-access, trusted virtual computers [6]
for decentralized, transaction-driven resource management in
communication networks and distributed autonomous sys-
tems [5], [[7]. For these reasons, blockchain technologies have
been heralded by both the industry and academia as the
fundamental “game changer” [8] in decentralization of digital
infrastructures ranging from the financial industry [4] to a
broad domain including Internet of Things (10Ts) [9] and self-
organized network orchestration [10].

Generally, the term “blockchain networks” can be inter-
preted from two levels, namely, the “blockchains” which
refer to a framework of immutable data organization, and the
“blockchain networks” on top of which the approaches of data
deployment and maintenance are defined. The two aspects are
also considered as the major innovation of blockchain tech-
nologies. For data organization, blockchain technologies em-
ploy a number of off-the-shelf cryptographic techniques [[11]-
[13] and cryptographically associate the users’ on-chain iden-
tities with the transactions of their tokenized assets. Thus,
blockchains are able to provide the proofs of authentication for
asset (i.e., token) transfer and then the proofs of asset owner-
ships. Furthermore, a blockchain maintains an arbitrary order
of the transactional records by cryptographically chaining the
record subsets in the form of data “blocks” to their chronic
predecessors. With the help of cryptographic references, any
attempt of data tampering can be immediately detected. From
the perspective of network organization, the problem of repli-
cated agreement [14], [15] on a single/canonical transaction
history among trustless nodes is creatively tackled by the
blockchain consensus protocols in an open-access, weakly
synchronized network. Blockchain consensus protocols are

IDistributed consensus orchestrates the states of replicated program ex-
ecution on decentralized notes. It provides the runtime environment for
distributively verifying the output of the same program. Therefore, the
blockchain network is also known as a distributed Virtual Machine (VM)
in the literature [5].

http://arxiv.org/abs/1805.02707v4

able to offer the agreement on the global blockchain-data state
among a large number of trustless nodes with no identity
authentication and low messaging overhead [16]. To achieve
this, a number of blockchain networks, e.g., Bitcoin, choose to
incorporate an incentive-based block creation process known
as “block mining” in their protocols. With distributed consen-
sus, the blockchain can be viewed as a universal memory of
the blockchain network. Meanwhile, the blockchain network
can be viewed as a virtual computer (i.e., distributed VM)
comprised by every node therein.

With the rapid evolution in blockchain technologies, the
demand for the higher-level quality of services by blockchain-
based applications presents more critical challenges in de-
signing blockchain protocols. Particularly, the performance of
blockchain networks significantly relies on the performance
of the adopted consensus mechanisms, e.g., in terms of
data consistency, speed of consensus finality, robustness to
arbitrarily behaving nodes (i.e., Byzantine nodes [15]) and
network scalability. Compared with the classical Byzantine
consensus protocols allowing very limited network scalability
in distributed systems [15], [17], most of the existing con-
sensus protocols in open-access blockchain networks (e.g.,
Bitcoin) guarantee the better network scalability at the cost
of limited processing throughput. Also, to achieve decentral-
ized consensus among poorly synchronized, trustless nodes, a
number of these protocols incur huge consumption of physical
resources (e.g., computing power) [3]. Moreover, to ensure
a high probability of consensus finality, the protocols may
also impose high latency for transaction confirmation. Out of
such concerns, a large volume of research has been conducted
with the aim of improving the performance of the open-access
blockchain consensus protocols in specific aspects. However,
in spite of a few short surveys [16], [18], a comprehensive
study on the development of these consensus protocols and
the related problems is still missing. Especially, there is a
lack of a concise overview on how such a development can
be interpreted under a uniform framework and how it impacts
the potential applications of blockchain networks.

During the past decade, the scope of blockchain networks
has been expanded way further from tamper-evident dis-
tributed ledgers. However, due to the recent market frenzy
about cryptocurrencies, most of the existing general reviews
and surveys on blockchains emphasize narrowly the scenarios
of using blockchain networks as the backbone technologies for
cryptocurrencies, especially the market-dominant ones such
as Bitcoin and Ethereum [2]-[5], [18]-[21]. For example,
the issues regarding the client (user)-side application (i.e.,
wallet), P2P network protocols, consensus mechanisms and
user privacy in the scope of Bitcoin are discussed in [3], [4].
In [19], a brief summary of the emerging blockchain-based
applications ranging from finance to 10Ts is provided. A sys-
tematic survey is conducted in [20] with respect to the security
in the Bitcoin network including the identified attacks on the
consensus mechanisms and the privacy/anonymity issues of
the Bitcoin clients. In [5], [21], the special issues regarding

the design, application and security of the smart contractd]
are reviewed in the context of the Ethereum network. In [7],
[16], two brief surveys on consensus protocols in blockchain
networks are provided.

The existing surveys on the fast-developing studies of
blockchain technologies rarely provide a global view on
the issues related to consensus protocols. Our work aims
to fill this gap by providing a comprehensive survey on
this specific topic. To distinguish our study from the exist-
ing works, we present our survey on blockchain networks
from the perspective of consensus formation, especially in
open-accessﬁ P2P networks. In analogy to the distributed
database, blockchain consensus is perceived as a process
of collaborative state transitions among distributed nodes in
the framework of blockchain-specified data organization. We
emphasize that such a viewpoint brings the taxonomy of
blockchain networks into a paradigm that is comparable to the
classical problems of global state maintenance in distributed
systems [22]]. Therefore, we are able to cast our analysis of
blockchain networks into the context of classical fault-tolerant
studies by focusing on the standard consensus properties in
distributed systems (i.e., the Agreement-Validity-Termination
properties [22, Chapter 13.1]). We provide a uniform view
of blockchain networks by presenting a number of imple-
mentation stacks and revealing the interconnection between
different protocol components therein. We align our survey
on blockchain consensus protocols with a uniform framework
based on Zero-Knowledge (ZK) prover-verifier systems [12],
[13] in Section [l By focusing on the blockchain protocols
for data organization, network organization, and consensus
maintenance, our survey contributes in the following aspects:

(1) providing a brief overview on the data organization and
network protocols of blockchain networks,

(2) providing a generic paradigm for the consensus mech-
anisms using cryptographic techniques in open-access
blockchain networks,

(3) reviewing the studies on the behaviors of the ratio-
nal (profit-driven) nodes in the consensus processes of
blockchain networks,

(4) providing an in-depth review on the research effort toward
addressing the concerns (e.g., performance vs. scalabil-
ity) for blockchain networks with different roadmaps of
consensus protocol design, and

(5) providing an outlook of the research in the emerging
decentralized applications built on top of the consensus
layer, which may not be limited to the framework of the
prevalent blockchain technologies (cf. our discussion in

Sections [[ITHV).

The rest of this survey is organized as follows. Section [T
provides an introductory overview on the protocol organi-
zation of blockchain networks. Section M provides an in-

2A smart contract is a deterministic program stored as executable bytecode
on the blockchain [5], [21]. Its replicas are independently executed in the
local VMs/containers on some or all nodes in the network, where the same
triggering transactions produce the same output on all the honest nodes.

3We consider the property of opens access to all network functionalities
instead of only open-access blockchain data. Throughout the survey, we use
the terms “opens-access” and “permissionless” interchangeably.

Applications

\
| Application Layer

Distributed Intermediary Distributed Access
for Service Provision

I (See Section 1)
Control (e.g., [37]) ‘

,,,,,,,,,,,,,,,,,, . Global State

| Machine Layer

(Distributed Virtual Computers
|
|
|

Smart Contract Executed in Distributed
VMs (e.g., Ethereum VM [35])

Service Provision by Distributed Consensus
Nodes (e.g., Distributed Data Storage [36])

‘ | (Inter-Op APIs, See

Consensus Protocols

| Section [ZII)
I

Consensus Layer
(Core Layer, see

Byzantine Fault-tolerant Replication
Protocols (e.g., Practical BFT [17]
and Ripple [32]) and Hybrid Protocols

Consensus Protocols with Proof of
Concept (e.g., Proof of Work [23]
and Proof of Stake [33])

Incentive Mechanisms
(e.g., Rewards for Block
Mining and Uncle
Block Reference [34])

Sections [MHVI)

Data Organization Protocols

_ Data and Network
, Organization Layer

Network Protocols

Storage of Ledger

Replica (Local Database) ‘ -

Cryptographic Functionality

see Section
Overlay P2P Protocols 1 m

(e.g., Whisper [29],

Components: Telehash [30],
Data Ordering: Linear Asymmetric Homomorphic JSON'RPC_ 131, etc)
(i.e., Linear List [23]) vs. Encryption Encryption Cryptographic Transport
Nonlinear (i.e., Tree [25] and Protocols (e.g. Ethereum
Directed Acyclic Graph [26]) Hash Merkle
Data Aggregation: Block (e.g., Function Tree [11]

Blockchain [23]) vs. Transaction
(e.g., IOTA Tangle [24])

Atomic Data Record
(i.e., Transactions)

< Zero-Knowledge
Proof [12], [13]

Routing Protocols
(e.g., Kademlia [27])

Lower OSI
Protocol Layers

I
I
I
I
I
I
Wire Protocol [28]) :
I
I
I
I
I
I

[
|
|
|
|
|
|
|
|
|
l Peer Discovery and
|
|
|
|
|
\

Figure 1.

depth survey on the popular approaches of consensus protocol
design for open-access networks using linear blockchains.
Consequently, Section V] provides a survey on the studies
of the rational nodes’ strategies in these consensus processes
and their impact on the performance of blockchain networks.
Section [V extends our survey on blockchain consensus pro-
tocols to the emerging fields including virtual block-mining
(i.e., blockchain-extension) mechanism and hybrid consensus.
Section [V briefly reviews the emerging cross-layer design re-
garding the data organization and consensus protocols, namely,
the “next-generation blockchains” which may have different
roadmaps for scalability and performance other than the
prevalent blockchain paradigm. Section [VIIl provides a short
review of the emerging applications of blockchains as well as
an outlook of the potential research directions in the context
of telecommunication networks. Section [VIII concludes this
survey by summarizing the contributions.

Il. PROTOCOL OVERVIEW AND PRELIMINARIES
A. Overview of Blockchain Network Protocols

The core task of a blockchain network is to ensure that
the trustless nodes in the network reach the agreement upon
a single tamper-proof record of transactions. The network is
expected to tolerate a portion of the nodes deviating from this
canonical record with their local views of data (i.e., replica).
From the perspective of system design, a blockchain network
can be abstracted into four implementation levels. These
levels are the protocols of data and network organization,
the protocols of distributed consensus, the framework of au-
tonomous organization relying on smart contracts [5] executed
in distributed VMs and the implementation of human-machine
interfaces (i.e., application). Following the approach of proto-
col layer definition in the Open Systems Interconnection (OSI)
model, we provide in Figure [I] an overview of these layers in
blockchain networks and the related ingredient technologies.

An overview of the blockchain network implementation stacks. The arrow direction indicates the influence on protocol component selection.

The data organization protocols provide a number of in-
gredient cryptographic functionalities [11]-[13] to establish
unique and secured node identities in a blockchain network.
The protocols also define the approaches to form the cryp-
tographic dependence among all the records, e.g., transaction
records and account balances, in a local blockchain replica
for ordering and tamper proof. From the perspective of data
representation, the term “blockchain” is named as such partly
for historical reason. In early networks such as Bitcoin [1], the
digitally signed transactional records are arbitrarily “packed
up” into a cryptographically tamper-evident data structure
known as the “block”. The blocks are then organized in a
chronological order as a “chain of blocks”, or more precisely,
a linear list of blocks linked by tamper-evident hash pointers.
Nevertheless, to improve the processing efficiency, network
scalability and security, the linear data organization framework
has been expanded into the nonlinear forms such as trees
and graphs of blocks [26], [38]. As in linear blockchains, the
partial orders are also determined by the chaining direction
between blocks. Furthermore, block-less, nonlinear data struc-
tures are also adopted in recent protocol design [24]. Despite
the different forms of block organization, cryptographic data
representation provides the fundamental protection of privacy
and data integrity for blockchain networks. When compared
with conventional database, it also provides more efficient on-
chain storage without harming the data integrity.

On the other hand, the network protocols provide the
means of P2P network organization, namely, peer/route dis-
covery and maintenance as well as encrypted data trans-
mission/synchronization over P2P links. Given reliable data
synchronization over P2P connections, the consensus layer
provides the core functionality to maintain the originality, con-
sistency and order of the blockchain data across the network.
From the perspective of distributed system design, the consen-
sus protocols provide Byzantine agreement [15] in blockchain

networks. More specifically, the nodes in the network expect to
agree on a common update, i.e., consensus, of the blockchain
state that they copy as the local replicas even in the presence
of possible conflicting inputs and arbitrary faulty (Byzantine)
behaviors of some nodes. When choosing the permissoned
access-control schemes of network functionalities, blockchain
networks usually adopt the well-studied Byzantine Faulty-
Tolerant (BFT) consensus protocols such as Practical BFT
(PBFT) [17] for reaching the consensus among a small group
of authenticated nodes (e.g., HyperLedger Fabric v0.5 [39]).
On the contrary, in open-access/permissionless blockchain net-
works, probabilistic Byzantine agreement is achieved by com-
bining a series of cryptographic techniques, e.g., cryptographic
puzzle systems [13], [40], and incentive mechanism design.
As pointed out in [18], permissioned consensus protocols
rely on a semi-centralized consensus framework and a higher
messaging overhead to provide immediate consensus finality
and thus high transaction processing throughput. In contrast,
permissionless consensus protocols are more appropriate for a
blockchain network with loose control on the synchroniza-
tion and behaviors of the nodes, but may only guarantee
probabilistic finality. In the condition of bounded delay and
honest majority, permissionless consensus protocols provide
significantly better support for network scalability at the cost
of a lower processing efficiency.

Provided that the robustness of the consensus protocols is
guaranteed, smart contracts are deployed on the distributed
virtual computer layer. In brief, this layer abstracts away the
details of data organization, information propagation and con-
sensus formation in blockchain networks. As the interoperation
layer between the lower-layer protocols and the applications,
the virtual computer layer defines the high-level programming
language implementation (e.g., Solidity in Ethereum [21]])
for encoding smart contracts. It also provides the sandboxed
runtime environment (e.g., Ethreum VMs) to ensure the correct
execution of the replicated smart contracts on the network
level. The virtual computer layer may adopt different levels
of Turing-completeness for smart contract implementation,
ranging from stateless circuits in Bitcoin [1] to fully Turing-
complete state machines in Ethereum [35] and HyperLedger
Fabric [39]. Full Turing-completeness enables blockchain net-
works to perform general-purpose computation in a replicated
manner. For this reason, a blockchain network is able to
not only provide the services of trusted data recording and
timestamping, but also facilitate the functionalities of general-
purpose autonomous organization. Therefore, blockchain net-
works are able to work as the backbone of autonomous
organization systems for managing data or transaction-driven
interactions among the decentralized entities in the network.
On top of the virtual computer layer, the application layer
provides the end-user-visible interfaces such as Distributed
Applications (DApps) [41], [42] and cryptocurrencies.

B. Cryptographic Data Organization

When viewed as a data structure, a blockchain can be
abstracted as an infinitely-growing, append-only string that is
canonically agreed upon by the nodes in the blockchain net-
work [23]. For data organization, the local blockchain replica

of each node is organized in a hierarchical data structure of
three levels, namely, the transactions, the blocks and the chain.
Each level requires a different set of cryptographic function-
alities for the protection of data integrity and authenticity.

1) Transactions, Addresses and Signatures: Transactions
are the atomic data structure of a blockchain. Generally, a
transaction is created by a set of users or autonomous objects
(i.e., smart contracts) to indicate the transfer of tokens from
the senders to the specified receivers. A transaction specifies
a possibly empty list of inputs associating the token values
with the identities (i.e., addresses) of the sending users/objects.
It also specifies a nonempty list of outputs designating the
redistribution result of the input tokens among the associated
identities of the receivers. A transaction can be considered
as a static record showing the identities of the senders and
the receivers, the token value to be redistributed and the
state of token reception. To protect the authenticity of a
transaction record, the functionalities of cryptographic hashing
and asymmetric encryption are activated:

« Hash Function: A cryptographic hash function maps at
random an arbitrary-length binary input to a unique,
fixed-length binary output (i.e., image). With a secure
hash function (e.g., SHA-256), it is computationally in-
feasible to recover the input from the output image. Also,
the probability to generate the same output for any two
different inputs is negligible.

o Asymmetric Key: Each node in the blockchain network
generates a pair of private and public keys. The private
key is associated with a digital signature function, which
outputs a fixed-length signature string for any arbitrary-
length input message. The public key is associated with
a verification function, which takes as input the same
message and the acclaimed signature for that message.
The verification function only returns true when the
signature is generated by the signature function with the
corresponding private key and the input message.

The nodes in the network or the autonomous objects identify
themselves by revealing their public keys, namely, the hash-
code of their public keys, as their permanent addresses (also
known as their pseudo-identities) on the blockchaird. Since
each input tuple in a transaction is signed by the associated
sending account, the network is able to publicly validate the
authenticity of the input through verifying the signature based
on the sender’s public address.

2) Block Organization, Hash Pointer and Merkle Tree:
A block is a container of an arbitrary subset of transaction
records and can only be created by a node participating in the
consensus process. To protect the integrity of the transaction
records and to specify the ordering of adjacent blocks in a
consensus node’s local view, a data field known as the hash
pointer is kept in the block’s data structure. In addition, to
reduce the on-chain storage, the cryptographic data structure
of Merkle tree is also enabled to generate the tamper-evident
digest in the transaction set of a block (see Figure [2):

4Some cryptocurrency systems (e.g., Monero [43] and ZCash [44]) incorpo-
rate cryptographic techniques such as one-time signature and group signature
to create ephemeral addresses for enhancing anonymity.

Block k Block k+1 Block k+2

Hash of k [Hash o ke1 [Hashofke2 |

Hash of k-1 ‘ Hash of k ‘ Hash of k+1 ‘

Transaction
Represer

Transaction

‘ Transaction

I |
', Merkle tree for a set of 4 transactions (TXs)

Figure 2. Illustration of a chain of blocks, where the transactions in a single
block is represented by a Merkle root.

« Hash pointer: A hash pointer to a block is the hashcode of
the concatenated data fields in that block. The hashcode
of the current block is stored as the header of that block.
The hashcodes of the reference blocks are stored as the
hash pointers of a block to indicate that at the local view,
the block recognizes that the transactions in the reference
blocks are created earlier than those in the current block.

o Merkle Tree [11]: A Merkle tree represents a transaction
set in the form of a binary tree. Therein, each leaf is
labeled with the hashcode of a transaction and a non-leaf
nodes is labeled with the hashcode of the concatenated
labels of its two child nodes. The root node of the
Merkle tree is known as the Merkle digest/root. A block
storing only the Merkle root of the selected transactions
is known to be in a lightweight form, which is sufficient
for quick validation and synchronization. When using the
lightweight-form storage, the node has to query its peers
to retrieve the complete transaction records in the blocks.

In addition to the Merkle digest, block header and the hash
pointers, a block may also contain auxiliary data fields, whose
definition varies with the adopted protocol of block generation
based on different consensus schemes. At a local view of
the blockchain, the blocks are organized based on the hash
pointers to their references/predecessors. Every blockchain
admits a unique block with no reference as the “genesis
block”, namely, the common ancestor block of all valid blocks
in the chain. According to the number of hash pointers to the
predecessors that are allowed to be kept by a block, the block
organization can vary from a linear linked list to a tree of
blocks (e.g., GHOST [25]) or a Directed Acyclic Graph (DAG)
(e.g., SPECTRE [26]). Without specification, we limit most of
our discussion on blockchains to the linear-list case, where the
total order of the blocks is guaranteed (see Figure [2)).

C. Blockchain Networks

In a Byzantine environment, the identity management mech-
anism plays a key role in determining how the nodes in a
blockchain network are organized. In an open-access (i.e.,
public/permissionless) blockchain network, a node can freely
join the network and activate any available network func-
tionalities. Notice that the term “node” refers to a logical
entity (i.e., the identity of a blockchain user) rather than to
a physical device. For example, multiple “nodes” associated

with different network functionalities can be hosted on the
same physical machine. In alternative words, a physical device
may appear in multiple identities in the network. Without any
authentication scheme, the nodes are organized as overlay P2P
networks. Comparatively, in a consortium (i.e., permissioned)
blockchain network, only the authorized nodes are allowed to
enable the core functionalities such as consensus participation
or data propagation. The authorized nodes may be organized
in different topologies, e.g., fully connected networks or
P2P networks, according to the consensus protocols that the
networks adopt. In this paper, we mainly focus on the network
protocols in the permissionless cases.

In permissionless blockchain networks, the main goal of
the network protocol is to induce a random topology among
the nodes and propagate information efficiently for blockchain
replica synchronization. Most of the existing blockchain net-
works employ the ready-to-use P2P protocols with slight
modification for topology formation and data communication.
For peer discovery and topology maintenance, the nodes in
Bitcoin-like blockchain networks rely on querying a hard-
coded set of volunteer DNS servers, which return a random
set of bootstrapping nodes’ IP addresses for the new nodes
to initialize their peer lists [45], [46]. Nodes then request
or advertise addresses based on these lists. In contrast, the
Ethereum-like networks adopt a Kademlia-inspired protocol
based on Distributed Hash Tables (DHTSs) [27] for peer/route
discoveryﬁ through UDP connections. In blockchain networks,
the connection of a node to a peer is managed based on
reputation using a penalty score. A node will increase the
penalty score of the peer sending malformed messages until
the IP address of the faulty node is locally banned [28], [46].

To replicate the blockchain over all nodes in the network,
the messages of transactions and blocks are “broadcast”
through flooding the P2P links in a gossip-like manner.
Typically, a P2P link in blockchain networks is built upon
a persistent TCP connection after a protocol-level three-
way handshake, which exchanges the replica state and the
protocol/software version of each node [28]], [47]. After the
connections to the peer nodes are established, another three-
way handshake occurs for a node to exchange new trans-
actions/blocks with its neighbors. The node first notifies its
peers with the hashcode of the new transactions/blocks that
it receives or generates. Then, the peers reply with the data-
transfer request specifying the hashcode of the information that
they need. Upon request, the transfer of transactions/blocks
is done via individual transfer messagesﬁ. The data transfer
in blockchain networks is typically implemented based on the
HTTP(s)-based Remote Procedure Call (RPC) protocol, where
the messages are serialized following the JSON protocol [28].

An open-access blockchain network does not explicitly
specify the role of each node. Nevertheless, according to the
enabled functionalities, the nodes in the network can be cate-
gorized as the lightweight nodes, the full nodes and the con-
sensus nodes [48]. Basically, all nodes are required to enable

SKademlia measures the node distance using XOR distance of the node
addresses (hash values). The k-closest nodes are selected as neighbors.

6For example, the details of handshake and synchronization in the Ethereum
network are defined in the DEVp2p Wire Protocol [28].

Lightweight

@ Full Node / ightwei
<V consensus Node Node / Wallet

Fi of of Fu of
L Consensus ion = u o

Participati Complete Storage " Lightweight Storage

of Routing

Figure 3. lllustration of the nodes’ roles in a permissionless blockchain
network. The P2P links between consensus nodes are shown in blue.

Consensus
Finality

Transaction Validation
and Block Mining

I
Broadcasting | Transaction Propagation
Transactions ‘ over P2P Links

~§ --1—@ .

\
,,., 7

I
I
l
~Sa
I Blockchain Netwgrk
|
-
-
|
|
I
|
Multiple | Consensus Canonical
Issuers Nodes Data View

Figure 4. The life cycle of blockchain transactions. Note that transaction val-
idation and blockchain mining may happen at the same time with transaction
propagation, depending on the consensus protocol adopted by the blockchain.

the routing functionality for message verification/propagation
and connection maintenance. A lightweight node (e.g., wallets)
only keeps the header of each block in its local storage. A full
node stores locally a complete and up-to-date replica of the
canonical blockchain. Compared with the lightweight nodes,
a full node is able to autonomously verify the transactions
without external reference. A consensus node enables the
functionality of consensus participation. Therefore, it is able
to publish new blocks and has a chance to influence the state
of the canonical blockchain. A consensus node can adopt
either complete storage or lightweight storage. In Figure 3
we present an example of different node types in a pub-
lic blockchain network. Meanwhile, the lifecycle of a new
transaction is shown in Figure [l It is worth noting that the
consensus nodes are often referred to as the “miners” or “min-
ing nodes” of blocks in the context of blockchain consensus
formation, especially when token rewards of block proposal
are involved. Meanwhile, different roles of nodes lead to the
inconsistency in their interests. Namely, the transaction-issuing
nodes (e.g., lightweight nodes) may not be the transaction-
approving nodes (i.e., consensus nodes). For this reason,
caution needs to be taken in protocol design to ensure that
the consensus nodes act on behalf of the others in a trustless
environment, especially on the consensus layer.

D. Consensus in Blockchain Networks

In the context of distributed system, the issue of maintain-
ing the canonical blockchain state across the P2P network
can be mapped as a fault-tolerant state-machine replication
problem [14]. In other words, each consensus node maintains
a local replicate (i.e., view) of the blockchain. An agreement

(i.e., consensus) on the unique common view of the blockchain
is expected to be achieved by the consensus nodes in the
condition of Byzantine/arbitrary failured]. In blockchain net-
works, Byzantine failures cause faulty nodes to exhibit ar-
bitrary behaviors including malicious attacks/collusions (e.g.,
Sybil attacks [49] and double-spending attacks [20]), node
mistakes (e.g., unexpected blockchain fork due to software
inconsistency [50]) and connection errors. We can roughly
consider that the sequence of blocks represents the blockchain
state, and the confirmation of a transaction incurs a blockchain
state transition. According to [14], [51], a blockchain updating
protocol is said to achieve the (probabilistic) consensus (a.k.a.
atomic broadcastd [14], [52], [53]) in a Byzantine environment
if the following properties are (probabilistically) satisfied [[16]:

« Validity (Correctness): If all the honest nodes activated
on a common state propose to expand the blockchain by
the same block, any honest node transiting to a new local
replica state adopts the blockchain headed by that block.

o Agreement (Consistency): If an honest node confirms a
new block header, then any honest node that updates its
local blockchain view will update with that block header.

« Liveness (Termination): All transactions originated from
the honest nodes will be eventually confirmed.

« Total order: All honest nodes accept the same order of
transactions as long as they are confirmed in their local
blockchain views.

The consensus protocols vary with different blockchain
networks. Since the permissioned blockchain networks admit
tighter control on the synchronization among consensus nodes,
they may adopt the conventional Byzantine Fault-Tolerant
(BFT) protocols (c.f., the primitive algorithms described
in [54], [55]) to provide the required consensus properties.
A typical implementation of such protocols can be found
in the Ripple network [32]], where a group of synchronized
Ripple servers perform blockchain expansion through a voting
mechanism. Further, if an external oracle is introduced to
designate the primary node for block generation (e.g., with
HyperLedger Fabric v0.5 [39]), Practical BFT (PBFT) [17]
can be adopted to implement a three-phase commit scheme for
blockchain expansion. In a network of N consensus nodes, the
BFT-based protocols are able to conditionally tolerate LN 1
(e.. [32]) to [N-1] (e.g., [56]) faulty nodes.

On the contrary, permissionless blockchain networks admit
no identity authentication or explicit synchronization schemes.
Therefore, the consensus protocol therein is expected to be
well scalable and tolerant to pseudo identities and poor syn-
chronization. Since any node is able to propose the state tran-
sition with its own candidate block for the blockchain header,
the primary goal of the consensus protocol in permissionless
networks is to ensure that every consensus node adheres to
the “longest chain rule” [3]. Namely, when the blocks are
organized in a linked list, at any time instance, only the longest
chain can be accepted as the canonical state of the blockchain.

"See [[15], [17] for the formal definition of Byzantine failures.

8Here, the semantic of “broadcast” is consistent with that in the context of
distributed system/database. Namely, a message is atomically broadcast when
it is either received by every nonfaulty node, or by none at all.

Due to the lack of identity authentication, the direct voting-
based BFT protocols do not fit in permissionless blockchain
networks. Instead, the incentive-based consensus schemes such
as the Nakamoto consensus protocol [1] are widely adopted.

E. Nakamoto Consensus Protocol and Incentive Compatibility

To jointly address the problems of pseudonymity, scala-
bility and poor synchronization, Nakamoto proposed in [1]
a permissionless consensus protocol based on a framework
of cryptographic block-discovery racing game. This is also
known as the Proof of Work (PoW) scheme [2], [3]. From
a single node’s perspective, the Nakamoto consensus protocol
defines three major procedures, namely, the procedure of chain
validation, the procedure of chain comparison and extension
and the procedure of PoW solution searching [23]. The chain
validation predicate provides a Boolean judgment on whether
a given chain of blocks has the valid structural properties. It
checks if each block in the chain provides valid PoW solution
and no conflict between transactions as well as the historical
records exists. The function of chain comparison and extension
compares the length of a set of chains, which may be either
received from peer nodes or locally proposed. It guarantees
that an honest node only adopts the longest proposal among
the candidate views of the blockchain. The function of PoW
solution searching is the main “workhorse” of the protocol
and defines a cryptographic puzzle-solving procedure in a
computation-intensive manner.

In brief, PoOW solution requires exhaustively querying a
cryptographic hash function for a partial preimage generated
from a candidate block, whose hashcode satisfies a pre-defined
condition. For simplicity of exposition, let #(-) denote the
hash function and « denote the binary string assembled based
on the candidate block data including the set of transactions
(e.g., Merkle root), the reference hash pointers, etc. Then, we
can formally define the PoW puzzle and solution as follows:

Definition 1. Given an adjustable hardness condition param-
eter h, the process of PoW puzzle solution aims to search
for a solution string, nonce, such that for a given string «
assembled based on the candidate block data, the hashcode
(i.e, the target block header bh) of the concatenation of z and
nonce is smaller than a target value D(h):

bh = H(z||nonce) < D(h), Q)
where for some fixed length of bits L, D(h) = 2--h.

The Nakamoto protocol is computation-intensive since to
win the puzzle solving race, a node needs to achieve a hash
querying rate as high as possible. This property financially
prevents the Sybil attacks of malicious nodes by merely
creating multiple pseudo identities. On the other hand, the
economic cost (mainly electricity consumption) also renders
it impractical for any node to voluntarily participate the
consensus process at a consistent economic loss. To ensure
proper functioning of a permissionless blockchain network,
the Nakamoto protocol introduces incentives to probabilisti-
cally award the consensus participants based on an embedded
mechanism of token supply and transaction tipping [1]. From

Replica

onQ e \
N??GW Block Block Block | _ I Block [
#t #(t+1) #(t+2) T #(E43)
I~/
1
/
Blockchain ,'
. Block Block Block Forkin
#t #(t+1) #(t+2) i TON9
‘\
\

Replica

onfl \\ o \
Node2 | plock Block Block _l‘ Block [
#t #(t+1) #(t+2) [T #(E+3)

___‘/

Figure 5. A (temporary) fork happens at nodes 1 and 2 when their local
PoW processes lead to different proposals of the new blockchain header, i.e.,
(t+3) and (t + 3)’ at the same time. Both (t + 3) and (t + 3) satisfy (I).
a game theoretic point of view, an implicit assumption adopted
by the Nakamoto consensus protocol is that all the participant
nodes are individually rational [57]. In return, the consensus
mechanism is expected to be incentive compatible. In other
words, the consensus protocol should ensure that any consen-
sus node will suffer from finical loss whenever it deviates from
truthfully following the protocol.

However, the incentive compatibility of the Nakamoto
protocol has been openly questioned [68]-[61]. Since the
Nakamoto protocol allows nodes to propose arbitrary blocks
from their local pending transaction set, it is inevitable for
the network to experience blockchain expansion race with a
(temporary) split, i.e., fork, in the local views of the blockchain
state [3], [20] (see Figure). To guarantee the consensus
properties and thus convergence to one canonical blockchain
state, the Nakamoto protocol relies on the assumption that
the majority of the consensus nodes follow the longest chain
rule and are altruistic in information forwarding. It has been
found in [58], [62] that rational consensus nodes may not
have incentive for transaction/block propagation. As a result,
the problem of blockchain forking may not be easily resolved
in the current framework of the Nakamoto protocol. Special
measures should be further taken in the protocol design, and
a set of folklore principles has been suggested to gear the
consensus mechanism towards a protocol for secured and
sustainable blockchain networks [4], [63]-[65]:

« The consensus mechanism should enforce that propagat-

ing information and extending the longest chain of block
are the monotonic strategies of the consensus nodes [65].
In other words, all the sub-stages in the consensus process
should be incentive-compatible in an open environment
with the tolerance to Byzantine and unfaithful faults.

o The consensus mechanism should encourage decentral-

ization and fairness. Namely, it should not only discour-
age coalition, e.g., botnets and mining pools [23], [66],
but also make the consensus process an uneasy prey of
the adversaries with cumulated computation power.

« The consensus mechanism should strike a proper balance

between processing throughput and network scalabil-
ity [53], [67].

I1l1. DISTRIBUTED CONSENSUS MECHANISMS BASED ON
PROOF OF CONCEPTS

Based on the technical components of permissionless
blockchain networks introduced in Section [, now we are
ready to review the details about the designing methodologies
of the consensus protocol for permissionless blockchains. In

Issue

Transactions
User(s)

Propose

Prepare Accept

Leader
(Node 1)

Node 2

Node 3

Node 4
(Faulty)

Figure 6. BFT-based message pattern of three-way handshake in permis-
sioned blockchains, e.g., Hyperledger Fabric using BFT-SMaRt [69]. The
message is formed based on the granularity level of blocks, i.e., a batch of
transactions.

this section, we start by presenting the consensus protocols
in the most prevalent blockchain networks in a uniform
framework. Then, we explore the different approaches of
extending/modifying the protocol to meet a series of specific
performance requirement.

A. Permissionless Consensus via Zero-Knowledge Proofs

For traditional BFT consensus protocols, e.g., Byzantine
Paxos [68] and PBFT [17], it is generally necessary to assume
a fully connected topology among the consensus nodes as
well as a leader-peer hierarchy for block proposal. The BFT
consensus process is organized explicitly in rounds of three-
way handshakes, thus synchronization between nodes with
bounded execution time and message latency is also required.
As illustrated in Figure [6] only the leader is responsible for
proposing new blocks to a consortium of peer nodes at the
proposal (pre-prepare) phase. This is followed by two all-to-all
messaging phases, where a peer node only accepts the proposal
(i.e., commit) when it receives more than a certain number
of proposal approvals from the other peers (e.g., L%J
with PBFT for a network of n honest nodes and f Byzantine
nodes). These classical state-machine replication approaches
guarantee the properties of deterministic agreement and live-
ness in Byzantine environment, and are well-known for their
low processing latency [18]. However, the characteristics of
leader-peer hierarchy and high communication complexity
in ©(n?) [68] naturally require the BFT-based blockchain
consensus protocols to be implemented in a small-scale per-
missioned network with centralized admission control. In order
to achieve full decentralization and high consensus scalability,
alternative approaches such as Nakamoto protocols become
critical in the design of blockchain’s consensus layer.

According to our discussion in Section [[I-E] the primary
functionality of PoW in the Nakamoto protocol is to simulate
the leader election in the traditional BFT protocols. The PoW
process abstracted by Definition [l is essentially a verifiable
process of weighted random coin-tossing, where the prob-
ability of winning is no longer uniformly associated with
the nodes’ identities but in proportion to the resources, €.g.,
hashrate casted by the nodes. Then, we can consider that each
new block is generated by a time-independent “lottery”, where
the probability of being elected as the leader for block proposal
depends on the ratio between the casted resource of a node
(or a node coalition) and the total resources presented in the
entire network. Let w; denote the resource held by node ¢ in a

network of node set A/, then, the probability of node ¢ winning
the leader-election in a PoW-like process should follow:

proin = % @)
jen Wi
where w; generalizes the share of any verifiable resource
such as computational power [1], memory [44], storage [70Q],
etc. In contrast to the BFT protocols, the peer nodes accept
the received block proposal following the longest-chain-rule
after they verify the validity of the block and the transactions
therein. Since no all-to-all messaging phase is needed, the
Nakamoto protocol may have a much smaller message com-
plexity Q(n) when the majority of the peers are honest [54].

As the core component of the Nakamoto protocol, the PoW
scheme originates from the idea of indirectly validating nodes’
identities in pseudonymous P2P networks through an identity
pricing mechanism [71], [72]. More specifically, the PowW
scheme described by Definition [is originally designed to
measure the voting power or the trustworthiness of a node
according to the constrained resources presented by the node
in the P2P network. Thus, the tolerable fraction of Byzantine
nodes in BFT protocols is replaced by a limited fraction of
the total computational power of the network [72]]. Compared
with the original design, the PoW scheme in blockchain
networks is no longer used for direct identity verification
between peers. Instead, the PoW processes of all the nodes
in a blockchain network are expected to collectively simulate
a publicly verifiable random function to elect the leader of
block proposal following the distribution given by (2). Based
on such a design paradigm, PoW can be generalized into the
framework of Proof-of-Concepts (PoX) (cf. [3]). With PoX,
the nodes in the network are required to non-interactively
prove the possession or commitment of certain measurable
resources beyond hashrates in PoW. Furthermore, their collec-
tive behavior should also yield a stochastic process for leader
assignment following the distribution given in 2).

From a network-level perspective, PoX generally relies
on a pseudorandom oracle to provide the property of ver-
ifiable unpredictability. It also needs to implement a one-
way cryptographic puzzle for the proof of resource devoting
in the framework of non-interactive ZK Proofs (ZKPs). A
conventional ZKP system consists of two parties, namely,
the prover executing a computationally unbounded strategy to
generate the proof of an assertion without releasing it and the
verifier executing a probabilistic polynomial-time strategy to
verify it. A party is non-interactive when it can only choose
between publishing messages to the network and remaining
passive. Otherwise it is interactive. In the context of blockchain
consensus protocols, the ZKP framework is extended from
proving a private input (i.e., knowledge) to proving posses-
sion/consumption of a minimum amount of resource (e.g.,
computational work). Recent studies haven shown that with
specific puzzle design, proof of knowledge and proof of work
can be incorporate into a single framework of indistinguishable
Proofs of Work or Knowledge (PoWorK) [40Q], where the
prover of work makes calls to a certain puzzle solving al-
gorithm instead of sampling from a non-polynomial language
witness relation distribution. In general, the adopted puzzle

has to satisfy the basic soundness and completeness proper-
ties [12], [13]. Namely, an invalid proof should always be re-
jected by nonfaulty verifying nodes while a valid proof should
always be accepted by nonfaulty verifiers. A complexity gap is
expected such that the puzzle is easy to verify (in polynomial-
time) but (moderately) hard for adversaries to invert/solve [73].
Furthermore, in permissionless blockchain networks, any node
is able to publish arbitrary block proposals. In this situation,
a 3-step interactive prover-verifier ZK scheme with verifier-
designated challenges will lead to excessive message overhead.
This is the critical reason for requiring a non-interactive puz-
zle design. Following the generation-computation-verification
paradigm of non-interactive puzzles (cf. the verifiable random
function defined in [[74]), we can abstract a PoX process into
the three stages described in Table [l

Table |
THREE-STAGE ABSTRACTION OF A POX PROCESS

Initialization (generator
of random seed or keys)

The initialization stage provides the prover and the
verifier the necessary information to run in subsequent
stages according to the PoX specifications. Typical
non-interactive ZKP systems, e.g., zk-SNARK' [75]
have to query a trusted third-party key/random seed
generation protocol to produce a common reference
string for both the prover and the verifier.

For non-interactive ZKP, the execution stage requires
the prover to generate according to the common refer-
ence string a random challenge that constitutes a self-
contained, uncompromisable computational problem,
namely, the puzzle. Meanwhile, a corresponding proof
(a.k.a. witness or puzzle solution) is also generated.

In the verification stage, a verifier checks about the
proof’s correctness, which is determined solely based
on the information issued by the prover.

Execution (challenge
and proof generator)

Verification

With the paradigm of PoX described above, we are now
ready to investigate the puzzle design problem for different
PoX schemes, which can be seen as modification or extension
to the existing PoW-based Nakamoto protocol (see [36], [76]-
[79] for examples). Since a trusted third party does not exist in
a permissionless blockchain network, special caution should
be taken in the puzzle design such that the freshness of
the puzzle is guaranteed at the execution stage. Namely, the
puzzle solution is unpredictable and the proof is hon-reusable.
Theoretical analyses of blockchain networks, e.g., [77] may
assume such a property on the condition that the network has
access to a universal random sampler (a.k.a., random oracle) or
an ideal randomness beacorld. Nevertheless, due to full decen-
tralization of the permissionless blockchain networks, a case-
by-case study for different PoX schemes is usually needed
for practical implementation of the random oracle in order
to prevent puzzle grinding and leader election manipulation.
Apart from the aforementioned properties of non-invertibility,
completeness, soundness and freshness, the other requirements
for puzzle design in PoX may include but are not limited to
the following:

o The puzzle should be resistant to the aggregation [81] or
outsourcing [82] of the computational resources.

o The puzzle-solving process should be eco-friendly [33],
[76], [78], [79], [183].

9The concept of random beacon service is first proposed in [80], where a
trusted third party periodically emits random integers to the public.

« In addition to providing incentive based on resource
pricing mechanism, the puzzle-solving process should
provide useful services in the meanwhile [36], [84].

B. Nakamoto Protocol Based on Primitive Proof of Work

As we have reviewed in the previous discussion, the prim-
itive POW scheme proposed in [1] works to financially dis-
incentivize the Sybil attacks on block proposal and maintains
a biased random leader election process in proportion to the
hashrate casted by each node. Recall that the input string =
to the PoW puzzle is a concatenation of the previous block’s
hash pointer and the payload data of the proposed block. For
the puzzle design of PoW, the reason of choosing the hash
function #H(-) in (@), e.g., SHA-256 in practice lies in the fact
that a hash function is computationally indistinguishable from
a pseudorandom function, if it preserves the properties of colli-
sion resistance’d and pre-image resistance [85]. Since the ran-
dom output of #H(-) is time-independent and only determined
by the input string, it plays the role of an uncompromisable
random oracle and outputs a unique, unpredictable result every
time when it is queried with a different z [86]. This means that
a node in the blockchain network is able to construct a fresh
random challenge solely based on its block proposal without
referring to any designated verifier or third-party initializer.
Meanwhile, it is well-known that with a proper cryptographic
hash function, the search for a preimage (x, nonce) satisfying
the condition H(z|nonce) < 2--" in (@) cannot be more
efficient than exhaustively querying the random oracle for
all nonce € [0,2%]. This leads to a puzzle time complexity
of ©(2") [64]. On the other hand, verifying the puzzle only
requires a single hash query. Therefore, the properties of non-
invertibility, completeness, soundness and freshness are all
satisfied by the PoW puzzle given by Definition [1I

For a given difficulty level D(h) in (), each single query
to H(-) is an i.i.d. Bernoulli trial with a success probability

Pr(y: H(z|ly) < D(h)) =27". ®)

We adopt the typical assumption of loosely network syn-
chronization for analyzing PoW-based blockchains [23], [86].
Namely, all messages are delivered with bounded delay in
one round. Then, @) indicates that the frequency for a node
to obtain the puzzle solutions during a certain number of
loosely synchronized rounds is a Bernoulli process. Since the
probability given in (@) is negligible for a sufficiently large h
with cryptographic hash functions #(-), the Bernoulli process
of node ¢ converges to a Poisson process as the time interval
between queries/trails shrinks [54].

To analyze the PoW scheme, let w; in (2) refer to the
number of queries that node ¢ can make to #(-) in a single
round. Then, we can approximate the rate of the Poisson
process for node i’s puzzle solution by \; = w;/2" [87].
Note that every node in the network is running an independent
puzzle-solving process. Since a combination of NV independent
Poisson processes is still a Poisson process, then, the collective

10The collision probability of #(-) is e=2(L) and thus negligible [23].

PoW process of a network with N nodes has a rate

| — Y Y
A== @)

i=1
The property of the combined Poisson processes in (4) leads
to the probability distribution for leader election in (2). From
a single node’s perspective, the repeated PoW puzzle-solving
processes take the form of a block-proposal competition across
the network. From the perspective of the network, for a given
difficulty level D(h), this puzzle-solving race simulates a
verifiable random function for leader election and guarantees
to follow the distribution in (). Most importantly, it tolerates
any fraction of the Byzantine nodes in the network.
Nevertheless, the PoW by itself cannot guarantee any of
the principle Byzantine consensus properties as described in
Section[[I-Dl On top of the designed PoW puzzle and the P2P
information diffusion functionality, three external functions
are abstracted in [23] to describe the Nakamoto consensus
protocol from a single node’s perspective. These functions are

1) the chain reading function that receives as input a
blockchain and outputs an interpretation for later use;

2) the content validation function that validates a
blockchain replica and checks the data consistency with
the applications (e.g., Bitcoin) on top of the blockchain;

3) the input contribution function that compares the local
and the received views of the blockchain and adopts the
“best” one following the rule of longest chain.

The input contribution function realizes the puzzle execution
stage and the content validation function realizes the puzzle
verification stage in Table [l Due to the independent Poisson
processes in the block-proposal competition, more than one
node may propose to extend the blockchain using different
blocks with corresponding valid PoW solutions at the same
time. As a result, the nodes may read from the network
multiple valid views of the blockchain and choose different
forks as their “best” local views (see also Figure [B). Theoret-
ically, it has been shown in [88] that deterministic consensus
in permissionless blockchain networks cannot be guaranteed
unless all non-faulty nodes are reachable from one to another
and the number of consensus nodes is known. For this reason,
in [23], [86], [89], Garay et al. propose to capture the prop-
erties of validity, agreement and liveness of the Nakamoto
consensus protocol by the three chain-based properties in
Table [Then, the PoW-based Nakamoto protocol can be
modeled as a probabilistic Byzantine agreement protocol.

In order to quantify the Byzantine agreement properties for
blockchains, three conditions, i.e., the upper-bounded informa-
tion diffusion delay, a “flat network™ with equal and limited
hashrates and the upper-bounded number of Byzantine nodes
are assumed in [23], [86], [89]. It is shown in [23] that the
three properties in Table [l are quantified by three parameters,
namely, the collective hashrates of the honest nodes, the
hashrate controlled by the adversaries and the expected block
arrival rate of the network-level Poisson process given in ().
It has been further proved in [23] that under the condition of
honest majority, the basic properties of validity and agreement
are satisfied by the Nakamoto protocol with overwhelming

Table Il
THREE PROPERTIES OF NAKAMOTO PROTOCOLS FOR BLOCKCHAINS

Nakamoto Corresponding| Explanation in Details

Protocol- Properties of

Specified Byzantine

Properties Agreement

Common- Agreement In the condition of multiple local blockchain views

prefix (and due to forking, the common-prefix property in-

property permanent dicates that after cutting off (pruning) a certain

order) number of block from the end (header) of the

local chain, an honest node will always obtain a
sub-chain that is a prefix of another honest node’s
local view of the blockchain.

Chain- Validity Among a given length of consequent blocks in

quality the local blockchain view of an honest node, the

property number of blocks that is proposed by Byzantine
nodes (adversaries) is upper-bounded.

Chain- Liveness For any given rounds of block proposals, the

growth number of blocks appended to the local view of

property any honest node is lower-bounded.

probability. Furthermore, the common-prefix property and the
chain-growth property formalize the presumption in [1] that a
transaction is secured when a sufficient length of subsequent
blocks is appended to the chain. In other words, when a
block is a certain number of blocks deep from the end of the
chain, or equivalently, the repeated block-proposal competition
has passed sufficiently many rounds, the transaction data in
that block is non-reversible/persistent and thus guaranteed
to be double-spending proof. It is worth noting that the
studies in [23], [89] provide a generalizable approach for
evaluating the security and the efficiency of the PoX-based
Nakamoto protocols in permissionless blockchains. Based on
the quantitative analysis of the properties in Table[II] the same
framework of security evaluation has been adopted by the
studies in consensus protocols using other types of puzzle
design such as Proof of Stakes (PoS) [[77], [90].

Due to the open access nature of permissionless
blockchains, the hashrate presented in a practical blockchain
network is generally unstable. As indicated by Figure[7] since
the introduction of the Application Specific Integrated Circuit
(ASIC) for hash acceleration in 2013, the practical PoW-
based blockchain networks, e.g., Bitcoin, have experienced
an explosive increase of the total hashrate with huge fluctua-
tion [91]. Practically, blockchain networks adopt a heuristic,
periodic difficulty-adjustment policy to maintain a roughly
fixed time interval, i.e., A~1 in (@), between two neighbor
blocks. However, the expected value of A~ is usually chosen
in an arbitrary manner and is frequently reduced in favor
of a higher transaction throughput (see Litecoin [92] and
ZCash [44] for example). Following the assumption of partial
synchronization [23], the roughly fixed time interval indeed
implies an upper bound for the information dissemination
latency in the P2P network [93].

With such a consideration in mind, a theoretical study is
provided in [94] between the upper bound of the information
latency and the persistence of the block data in a node’s local
view of the blockchain. Consider a flat network of N nodes
with a maximum block propagation delay of T'. It is found
in [94] that for a given fraction of adversary node p (0<p<
0.5), the block generation probability for each node should
satisfy the following condition in order to ensure the property

®

o

Total Hash Rate (TH’s)
o &

o

L L L L L L
2010 2011 2012 2013 2014 2015 2016 2017 2018
Date

@

3

Difficulty (2")
N
T

n
T

L L L L
2012 2013 2014 2015 2016 2017 2018

Date

(b)
Figure 7. Evolution of (a) the total hash rate and (b) the PoW puzzle difficulty
in the Bitcoin network over time. Data source: https://www.blockchain.com.

2010 2011

of data persistence (Theorem 1.1 in [94]):

1
Pr{ < —F——, ®)
Tp =1 wi

where Pr{ can be calculated based on (3) and a given hashrate.

Furthermore, the block interval rules the trade-off between
security and efficiency. The formal refers to the degree of
fulfillment (i.e., the probabilistic consistency) of the Byzantine
agreement properties, whereas the latter refers to the trans-
action throughput, which can be measured in the number of
confirmed transactions per second. In [45], [93], examination
on the block propagation delay 7' in shows that a safe
upper bound on T is jointly determined by the block size, the
network scale measured in hop counts, and the average round-
trip time of the links. The empirical study in [45] reveals that
for small-size blocks, e.g., less than 20kB for Bitcoin, the
round-trip delay is the dominant factor of the block propa-
gation delay. Otherwise, transaction validation time becomes
the major factor of the block propagation delay, which grows
linearly with respect to the size of a block, e.g., 80ms/kB
for Bitcoin. In [95], an implicit metric to capture the impact
of network scale on the block propagation delay is adopted.
Therein, the ratio between the block size and the propagation
time required to reach a certain percentage of the nodes in the
network is measured for the Bitcoin network. The experiments
show that in the Bitcoin network with 55kb/s propagation rate
for 90% of the nodes, the block interval should not be smaller
than 12s, which leads to a peak transaction throughput of
26TX/s for 250Byte transactions.

Furthermore, the studies in [96], [97] also consider the im-
pact of the propagation delay on the incidence of abandoning
a proposed block with valid PoW solution. More specifically,
finding a valid puzzle solution does not necessarily mean that
the proposed block will be finally accepted by the network.
Due to the propagation delay, a blockchain fork (see Figure B)
can only be adopted as the canonical blockchain state when
it is first disseminated across the network. By considering
both the round-trip delay and the block verification delay,
the average block propagation delay across a P2P network
is modeled as a function of the block size s in [97]:

T(s) = Tp(s) + To(s) = % + bs, (6)

where a is a network scale-related parameter, C' is the av-
erage effective channel capacity of each link [98] and b is
a coefficient determined by both the network scale and the
average verification speed of each node (cf. [45]). Based on
(6), the probability for the network to abandon/orphan a valid
block proposal of size s due to the delay of block diffusion is
modeled as follows [96], [97]:

PrOrphan(S) =1— 67)\T (s)’ (7)

where X is the expected block arrival rate.

From a user’s perspective, it is insufficient to know only
the network-level probability of block orphaning due to the
latency. Alternatively, it is of more interest to determine the
safe time interval between locally observing on the chain a
transaction and confirming it. With this in mind, the study
in [94] considers a scenario where the adversary gets addi-
tional computation time by delaying the block propagation
with a certain number of rounds A. Based on the analysis
of the common-prefix property [23], a new metric, i.e., K-
consistency is proposed in [94] to examine whether any two
honest nodes are able to agree on the blockchain state that is
at least K blocks deep from the end of the chain. Let « and 3
denote the probabilities that an honest node and the attackers
can propose a valid block within a round, respectively. The
analytical study in [94] (cf. [93, Lemma 8]) shows that the
required waiting time T is jointly determined by «, 3, A and
the parameter determining the searching space of the hash
function, i.e., L in Definition [II More specifically, as long as
the following condition is satisfied with an arbitrarily small
constant 6 > 0 (see [94, Theorem 1.2])

a(l— 2A+2)a) > (1+9)s, (8)

and K > Ko(L)=clog(L) for some constant ¢, the Nakamoto
protocol satisfies the property of K-consistency (except with
negligible probability in K'). However, the closed-form thresh-
old Ko(L) for K-consistency is not provided in [94].

C. Proof of Concepts Attached to Useful Resources

Under the framework of Nakamoto protocol, a number of
alternative PoX schemes have been proposed to replace the
original PoW scheme in permissionless blockchain networks.
Generally, these PoX schemes aim at two major designing
goals, i.e., to incentivize useful resource provision, e.g., [36],
[70], [84], [99], [100] and to improve the performance, e.g.,
in terms of security, fairness and eco-friendliness [83], [101],
[102] of the blockchain networks. Starting from this subsec-
tion, we will focus on the principles of puzzle design discussed
in Section [[II=Al and provide a close examination on different
PoX schemes in the literature.

With the purpose of useful resource provision, the idea
of “Proof of Useful Resources” (PoUS) has been proposed
to tackle the resource wasting problem of PoW. Instead of
enforcing the consumption of computational cycles for merely
hash queries, a number of studies are devoted to the design
of puzzles that are attached to useful work. An early attempt,
i.e., Primecoin [103], proposed to replace the PoW puzzle in
(@D by the puzzle of searching three types of prime number

chains, i.e., the Cunningham chain of the first/second kind
or the bi-twin chain [104]. However, the verification stage of
Primecoin puzzle is based on classical Fermat test of base two
(pseudoprime) [[103], hence violates the principle of soundness
in non-interactive ZKP. Meanwhile, since the induced solution
arrival does not follow the i.i.d. Bernoulli model in (@), the
Primecoin puzzle does not simulate the random distribution
for leader selection as required by (2).

In [105], a similar scheme, i.e., the proof of exercise is
proposed to replace the preimage searching problem in PoW
with the useful “exercise” of matrix product problems. The
scheme uses a pool of task proposals to replace the PoW-based
puzzle solving processes by the computation tasks offered by
non-authenticated clients. Each consensus node needs to bid
for a specific task to determine its puzzle. For this reason,
the puzzle solution-generating scheme behaves more like a
Computation as a Service (CaaS) platform. Since the matrix
problems in the task pool may present different complexity
levels, the puzzle competition does not fully simulate on the
network level the random distribution in (). Also, the solution
verification can only be done probabilistically due to the
lack of O(n) verification schemes. Therefore, the proposed
scheme in [105] suffers from the same problems as in the
Primecoin [103].

In [84], a new puzzle framework, i.e., useful Proof of Work
(uPoW) is designed to replace the primitive PoW puzzle in
(I with a specific set of problems satisfying not only the
properties of completeness, soundness and non-invertibility
(hardness), but also the additional requirement of usefulness.
Here, the usefulness is implied in the execution stage of the
puzzle (cf. Table). Formally, by assuming completeness and
soundness, the properties of usefulness can be defined as
follows (cf. [84}, Definition 1]):

Definition 2 (Usefulness). Suppose that a challenge c¢x and
an accompanying puzzle solution (proof) s are generated from
an input string z. If there exists an algorithm Recon(cx, s)
such that for a target function F'(-) its output satisfies
Recon(cx, s) = F'(x), the challenge is known to be useful for
delegating the computation of F'(x).

The study in [84] proposes to replace preimage searching
in (@) with a family of one-way functions satisfying the
property of fine-grained hardness [106] for uPoW puzzle
design. Namely, the PoW puzzle is proposed to be replaced by
the problem of known worst-case-to-average-case complexity
reduction. A special case of uPoW puzzles based on the
problem of k-Orthogonal Vectors (k-OV) is discussed. In brief,
the solution to k-OV performs an exhaustive search over k
sets of identical-dimension vectors and determines whether
for each set there exists a vector such that these k vectors
are k-orthogonal. In order to construct non-interactive proofs,
uPoW in [84] employs the hash function #(-) as a random
oracle. Simply put, given the number of vectors in each set,
non-interactive uPoW treats the elements of each vector as the
random coefficients of polynomials with the identical order.
uPoW initializes the first element of each vector, i.e., the
lowest order coefficient with a publicly known input string =
and then uses it as the input to #(-) for generating the next-

order coefficient. The output of H(x) will then be iteratively
used as the input for generating the next-order coefficient.
This can be considered as a typical example of applying the
Fiat-Shamir schemd™ to construct non-interactive PoW out of
interactive ZKP schemes. With such an approach, uPoW does
not need to explicitly define the vector sets. It also guarantees
that the solutions of k-OV found by each prover follow a
Bernoulli distribution. Therefore, the uPoW scheme fits well
in the existing Nakamoto protocols by simulating a provable
random function. As stated in [84], besides k-OV, uPoW is
compatible with computation delegation for other problems
such as 3SUM [106], all-pairs shortest path [106], and any
problem that reduces to them(®.

Schemes that are similar to uPoW can also be found
in [100]. In [100], the problem of untrusted computational
work assignment is addressed in a Trusted Execution Environ-
ment (TEE). The TEE can be constructed using Intel Software
Guard Extensions (SGX), which is a set of new instructions
available on certain Intel CPUs to protect user-level codes
from attacks by hardware and other processes on the same
host machine. In the permissionless network, the clients supply
their workloads in the form of tasks that can be run in an SGX-
protected enclave (i.e., protected address space). The study
in [100] exploits the truthfulness-guaranteeing feature of the
Intel attestation service [108] in the SGX-protected platform
to verify and measure the software running in an enclave.
With the designed puzzle, the work of each consensus node
is metered on a per-instruction basis, and the SGX enclave
randomly determines whether the work results in a valid block
proof by treating each instruction as a Bernoulli trial. Based on
the TEE, each executed useful-work instruction is analogous to
one hash query in the primitive PoW, and the enclave module
works as a trusted random oracle.

Apart from delegation of useful computation, PoX can
also be designed to incentivize distributed storage provision.
For example, Permacoin [109] proposes a scheme of Proof
of Retrievability (PoR) in order to distributively store an
extremely large size of data provided by an authoritative file
dealer. The file dealer divides the data into a number of
sequential segments and publishes the corresponding Merkle
root using the segments as the leaves. A consensus node
uses its public key and the hash function to select a random
group of segment indices for local storage. For each locally
stored segment, the node also stores the corresponding Merkle
proof derived from querying the Merkle tree. The challenge-
proof pair is generated based on a subset of the locally stored
segments and the corresponding Merkle proof. To ensure the
non-interactiveness and freshness of the puzzle (cf. interactive
PoR in [110]), the node needs a publicly known and non-
precomputable puzzle ID to seed the process of segment se-
lection called “scratch-off”. To help the readers understand the
puzzle generation process, we present a simplified execution
stage of PoR as follows (see also [109] Figure 1]):

o The execution stage of PoR: suppose a node is given

1The Fiat-Shamir scheme takes a similar form to the process of digital
signature verification, see [107] for the definition.

12These problems should be worst-case hard for some time bound and can
be represented by low-degree polynomials.

root = H(e|f)

N

e = H(alb) =3l
a=H(U1) b= H(Uz) ¢ = H(U3) d = H(Us)
U; Uy Us Uy

Figure 8. lllustration of Merkle proof: for segment U1, the Merkle proof is
obtained by climbing up the tree until the root (as the nodes in red).

the key pair (sk, pk), the puzzle 1D idpy;, the vector of
locally stored segment indices v, the required number of
Merkle proofs k, the vectors of all the file segments U
and the corresponding Merkle proof vector 7. The ran-
dom IDs of the local segments for challenge generation
can be determined by:

V1<j<k:rj=V(H(idpuz||pk|jllnonce) mod |v]), (9)

where nonce is a random value chosen by the node. For
each segment U(v(rj)) in the challenge, the proof is in
the form of (pki, nonce, U(v(rj)), 7(V(rj))).

The execution stage of PoR in [109] is composed of a fixed
number of queries to the random oracle H. Thereby, although
PoR satisfies the principle properties of non-interactive ZKP,
it does not simulate the random leader election process. In
this sense, the proposed PoR scheme may not be able to
achieve the claimed goal of “repurposing PoW” in [109].
Instead, it is more similar to the existing systems such as
Stoj [111], Sia [112] and TorCoin [99]], where PoX is only used
to audit the execution of the smart contracts or script-based
transactions instead of facilitating the consensus mechanism.

Further improvement to PoR can be found in the proposals
of KopperCoin [70] and Filecoin [36]. In [70], KopperCoin
adopts the same framework of distributed storage for a single
file as in Permacoin [109]. Compared with Permacoin, the
main improvement of the puzzle design in KopperCoin is to
simulate the random leader election process for block proposal.
KopperCoin introduces a bitwise XOR-based distance metric
between the index of a locally stored data segment and a
random, publicly known challenge ¢. A node needs to provide
the valid Merkle proof (PoR) of a segment, of which the index
(denoted by 7) should satisfy the following condition:

H(z) - 2091 < D(n), (10)

where the block payload 2 and the difficulty threshold D(h)
are defined in the same way as in Definition [II Compared
with (@), the solution searching for (I0) is now performed
within the range of the locally-stored segment indices. The
more segments a node offers to store, the better chance the
node has to find a solution to (I0). Again, the generation of
the public, unpredictable random challenge ¢ can be derived
based on hashing the header of the most recent block. This
approach presents another example of applying the Fiat-
Shamir transformation to realize non-interactiveness [107].

In the Filecoin network [36]], the concept of “spacetime” is
introduced to allow metering the data stored in the network
with an expiry time. Filecoin aims to provide the functionality

Loop Merkle Tree of .. Random data
Counter Chunks A P chunk sub-set
AR AR

Random Chunk
Selection

o Generate New e
Challenge
Repeated t Times

Ilustration of the PoST scheme based on iterative PoR over time.

Challenge

Generate
Proof

Output
Proof

Figure 9.

of recycling and re-allocating the storage on the provider
(miner) side as well as easing the files retrieval process on
the client side. Like in the proof-of-exercise scheme, File-
coin designs the market for storage and retrieval of multiple
files based on smart contracts. A new puzzle, i.e., Proof of
SpaceTime (PoST) [83], is adopted based on the intuition of
generating a PoR sequence during a certain period to prove
the holding time of useful storage. As illustrated by Figure B}
the major difference of PoST from PoR lies in the repeated
execution phases for challenge updating without rerunning the
initialization stage. Namely, a consensus node is required by
the Filecoin network to submit PoR (e.g., in a similar way to
Permacoin [109]) every time when the blockchain is extended
by a certain number of blocks. Instead of simulating random
leader election based on adjustable difficulty [[70], the Filecoin
network uses the following mechanism to determine whether
a node ¢ is elected for block proposal:

%H(ﬂrand(t)) <=
jen v

where ¢ is the index of consensus round (i.e., block index), L is
the output string length of the hash function (see (), rand(-)
is an assumed random oracle, and wj represents the storage
power of node i (see also (@)). It is worth noting that the
evaluation of wj in (II) can only be done through PoST. Thus,
the Filecoin network admits a double-challenge scheme, where
the leader election is performed based on a second challenge,
i.e., (I). The nodes with the better quality of PoST proofs
(storage power) are more likely to win the second challenge.
Under the framework of double challenges, a similar approach
of puzzle design can also be found in the proof of space-based
cryptocurrency proposal known as SpaceMint [83], [101].

(11)

D. Proof of Concepts for Performance Improvement

Alternative PoX schemes have also been designed with the
emphasis on improving the performance of PoW in the as-
pects such as security, fairness and sustainability. To alleviate
the problem of computation power centralization due to the
massive adoption of ASICs, memory-hard PoW, also known
as the Proof of Memory (PoM), is adopted by ZCash [44] and
Ethereum [35] networks. In the ZCash network, the Equihash
scheme [81] is adopted based on the generalized birthday
problem [113]. The study in [81] has pointed out that any
identified NP-complete problem can be the natural candidate
for the PoX puzzle due to their proved hardness, as long as
the solution verification can be completed in polynomial time.
However, a puzzle design only satisfying the hardness require-
ment may not be able to combat the botnet or ASIC-based
manipulation of hashrate. Thus, a suitable PoX is expected to

be “optimization-free” and “parallelism-constraint”. Namel
the solution searching process cannot be sped up by usin
alternative algorithms or through parallelization.

An ideal approach of imposing parallelism constraint is t
ensure that the PoW scheme is inherently sequential. Howeve
an inherently sequential NP problem that is known to b
verified in short time is yet to be found [81]. Therefort
the study in [81] adopts an alternative approach by imposin
enormous memory bandwidth to the parallel solution of th
puzzle. According to [113], the generalized k-dimension:
birthday problem is to find & strings of n bits from k sets ¢
strings, such that their XOR operation leads to zero. Equihas
employs the hash function #(-) to randomly generate the
strings using the block payload data = and a nonce (as i
@@)), such that both the XOR-based birthday problem solutio
and a PoW preimage of a given difficulty are found. It is
shown in [113] that the best solution algorithm to this problem
presents O(2"/K) complexity in both time and space and thus
is memory-intensive. More importantly, for a k-dimensional
problem, a discounting factor 1/¢ in memory usage leads to
O(¢¥/?) times more queries to the hash function. Due to the
physical memory bandwidth limit, the computation advantage
of parallelization is limited. These properties guarantee the
ASIC-resistance of Equihash.

With the same purpose of preventing the “super-linear”
profit through hashrate accumulation, Ethereum currently
adopts a different puzzle design known as Ethash for ASIC
resistance [[114]). Ethash requires the consensus nodes to search
for the PoW puzzle solution based on a big pseudorandom
dataset, which increases linearly over time. The dataset is
organized as the adjacency matrix of a DAG, where each
vertex represents a randomly generated data field of 128
bits. In the execution stage of Ethash, the node starts a one-
time search of the solution with a hash query, and uses the
concatenation of the block payload and a nonce to seed the
hash function for locating a random vertex in the DAG. Then,
the search is completed in a fixed-iteration loop of queries to
the hash function, for which the output of the last iteration, i.e.,
the data field of the last vertex in the path is used as the input
to determine the position of the next vertex in the DAG. The
final output of the loop is used to check against the preimage
condition as in (). As illustrated in Figure [I0 the designed
puzzle of Ethash makes the searching algorithm inherently
sequential. With Ethash, the rate of data field fetching from the
DAG is limited by the memory bandwidth. Then, paralleling
the hash queries with ASICs cannot lead to much performance
improvement in a single search of the puzzle solution.

Ethash [114] only makes the puzzle solution partially se-
quential within a single attempt of preimage search. Therefore,
Ethash still faces the problem of PoW outsourcing since a
consensus node can divide the puzzle solution search into
multiple sub-problems and outsource them to different “mining
workers” (i.e., puzzle solvers). Such a problem is also known
as the formation of mining coalition (pool) [61] and may result
in a serious problem of consensus manipulation by a handful of
full nodes [4]. In [82], a nonoutsourceable “scratch-off puzzle”
is proposed to disincentivize the tendency of mining task
outsourcing. Intuitively, when a node effectively outsources

Loop
Counter

! Miked
Data Set
-

Limited by
Memary
Bandwidth

Ained Has | Post Processing
th q) Function {Hash]
|I |
&___ Repeated &4 ___—-F/
Times

Figure 10. One query to the random oracle in Ethash for a given nonce
based on the iterative mixed hash operation for vertex searching.

Block Payload
and Nonce

Fetch DAG
Data Fleld

Success
or Fail

its puzzle-solving work to some mining machines, we call
the puzzle nonoutsourceable if these miners can steal the
block proposal reward of that node without producing any
evidence to implicate themselves. The study in [82] employs
Merkle proofs for puzzle design, which can be considered as
a generalization of the PoR [109]. In [82], a Merkle tree is
created based on a number of random strings. To generate a
fresh puzzle, a node queries the hash function for the first
time with a random nonce and the constructed Merkle root.
The output of this query is used to select a random subset of
distinct leaves on the Merkle tree. Then, the concatenation of
the Merkle proofs for each leaf in subset and the same nonce
is used as the input to the second query of the hash function.
The output is used to compare with the preimage condition
as given in (). If a solution (nonce) is found, the payload
of the proposed block is used as the input of the third query
to the hash function, and the output is used to select another
subset of random leaves on the Merkle tree. The corresponding
Merkle proofs are treated as the “signature” of the payload of
the proposed block. With such puzzle design, mining workers
only need to know a sufficiently large fraction of the Merkle
tree leaves to “steal” the reward by replacing the Merkle proof-
based signature with their own proofs.

It is worth noting that the nonoutsourceable puzzle in [82]
is generated in such a way to make the preimage search for ()
independent of the payload of the proposed block, i.e., using
the randomly generated Merkle tree. Then, a mining worker
is able to replace the original payload including the public
keys from the outsourcer by its own payload without being
detected. A similar proposal of nonoutsourceable puzzle can be
found in [115], where a nonoutsourceable puzzle is designed
based on two-fold puzzle. Namely, an inner puzzle is solved
as a typical PoW puzzle, whose solution is used as the input
of an additional PoW puzzle known as the outer puzzle. To
prevent outsourcing the work load, a mining worker’s signature
is required for the inner puzzle solution to be used by the outer
puzzle. However, it is pointed out in [115] that such design
can only be considered heuristic and is not guaranteed to have
the formal properties of weak outsourceability [82].

Apart from the manipulation-resistant puzzles, other puzzles
are proposed in [101], [102] with the emphasis on eco-
friendliness. Therein, the major goal is to reduce/remove the
repeated hash queries to curb energy consumption due to hash
queries. In [101]), the SpaceMint network is proposed based
on Proof of SPace (PoSP) [116]. Similar to PoR [109], PoSP

I=Hash(pk, J=Hash(pk,
LEF LEF

K=Hash(pk, L=Hash(pk,
k,GH LGH
G=Hash(pk, H=Hash(pk,
CD’ D

E=Hash(pk, F=Hash(pk,
eAB; f.BC h
L~] [| [] [|

pk: public key
A, B, C...: vertexvalues
a, b, c...: vertexindices

Figure 11. An example of DAG formation based on the hash of the parent
vertices: for miner i adopting a public key pkj, the value vj of the j’s
vertex in its DAG with m parent vertices {p1,..., pm} is obtained as
vj = H(pKi,J, Vp1,..., Vpm).

requires the consensus nodes to provide non-interactive proofs
of storage dedication during puzzle solution searching. The
major difference from PoR lies in that PoOSP does not need
the prover to store useful data (from the verifiers), and the
proof is based on a large volume of random data stored on
the provers’ hard drive. As in Ethash [114], the committed
space is also organized as a DAG, where the value of each
vertex is determined based on the hash of its parent vertices
(see Figure[II). A consensus node is required to use the hash
of an earlier block as the seed to sample a random set of vertex
values. The set of the vertex values forms the challenge of the
node’s local PoSP puzzle. If the node is able to provide the
Merkle proofs for all the vertices in the challenge set, namely,
the sibling vertices that lie on the path between each challenge
vertex and the end vertex in the DAG with no outgoing edge,
the proposed block is considered a valid block candidate.
SpaceMint also proposes to measure the quality of a set of
Merkle proofs based on the hash value of the concatenated
vertex in a Merkle tree. Then, the blockchain network is able
to select the block with the best quality of proof from the
candidate blocks when a fork occurs.

The study in [102] proposes to introduce a human-in-
the-loop puzzle, i.e., the Proof of Human-work (PoH) into
the Nakamoto protocol. The designing goal of PoH is to
guarantee the properties of eco-friendliness, usefulness and
centralization-resistance at the same time. It is proposed
in [102] that PoH should be able to provide non-interactive,
computer-generated puzzles which are moderately hard for a
human but hard for a computer to solve, even for the computer
that generates the puzzles. PoH is inspired by the widely-
adopted systems of Completely Automated Public Turing-
Test to tell Computers and Humans Apart (CAPTCHA) [117].
Traditional CAPTCHA systems usually take human-efficient
input (e.g., images) with a known solution and generate the
puzzle based on distortion to the solution. For PoH, a universal
sampler [[118] is assumed to be available to generate a random
CAPTCHA instance for the consensus node such that the
puzzle-generating machine is not able to directly obtain the
puzzle solution. Then, the node (i.e., miner) needs human work
to obtain the corresponding solution of the CAPTCHA puzzle.
A two-challenge puzzle design is adopted and the solution of
the CAPTCHA puzzle is used as the input of a small PoW
puzzle as defined in (@). A complete PoH solution includes a
CAPTCHA solution and a nonce such that they together satisfy
the preimage condition in (). PoH implicitly assumes that
some Artificial Intelligence (Al) problems (e.g., recognition of

distorted audios or images) are human-efficient but difficult for
machines. Then, by selecting a proper underlying CAPTCHA
scheme, it is possible to extend the PoH with a variety of
meaningful human activities ranging from that educational
purposes to a number of socially beneficial programs [118].
For a progressive summary, we summarize in Table [Tl the
major properties of the PoX schemes reviewed in this section.

IV. STRATEGIES OF RATIONAL NODES IN THE
FRAMEWORK OF NAKAMOTO CONSENSUS PROTOCOLS

In this section, we review the studies on the incentive com-
patibility of the Nakamoto consensus protocols. By adopting
the basic assumption on rationality of the consensus nodes
(i.e., block miners), we provide a comprehensive survey on
the node strategies in the consensus process for block mining.
It is worth noting that most of the analysis in the literature
about the consensus nodes’ mining strategies are presented in
the context of the PoW-based Bitcoin network. Nevertheless,
they can be readily extended to other PoX schemes under the
framework of Nakamoto protocols. In particular, we focus on
the game theoretic formulation of resource allocation during
the mining process, and then explore how miners can exploit
the vulnerability of the incentive mechanism of the Nakamoto
protocols in permissionless blockchain networks.

A. Incentive Compatibility of Nakamoto Protocols

For Nakamoto protocols, monetary incentive plays the key
role to ensure that most of the consensus nodes/miners follow
the rules of blockchain state transition during the puzzle
solution competition. In permissionless blockchain networks,
the incentive mechanism is built upon the embedded digital
token issuing and transferring schemes. In a typical PoW-
based blockchain network, the leader/winner in the block
proposal competition not only collects transaction fees from
the approved transactions in the new block, but also gets token
issuing reward, e.g., the “coinbase reward” in Bitcoin, for
expanding the blockchain with the new block. For this reason,
the puzzle competition process is compared to the process of
“gold mining”, since by casting resources into the competition,
the nodes expect to receive monetary rewards carried by the
tokens. As a result, the consensus participant nodes are better
known as block “miners” to the public.

In [65] the consensus in blockchain networks is divided
into three folds, namely, the consensus about the rules, e.g.,
about transaction dissemination and validation, the universality
of the blockchain state and financial value that the digital
token carries. Then, the studies on the Nakamoto protocol’s
incentive compatibility can also be categorized according to
these three aspects. Since the introduction of ASIC devices and
pool mining for PoW-based blockchain networks, concerns
have been raised about the nodes’ incentive to fully abide
by the protocol [60], [61], [65], [119]. Due to the explosion
of network-level hashrates (see Figure [7(a)), most of the
practical blockchain networks, i.e., cryptocurrency networks,
are nowadays dominated by the proxies of mining pools [66]
(see Figure[I2). An individual node in a mining pool is known

Table 111

COMPARISON OF DIFFERENT POX SCHEMES FOR PERMISSIONLESS BLOCKCHAINS

puzzle Name Origin of Hardness Designing Implementation ZKP gf"ggr?éf% Features of Network
(One-way Function) Goal Description Properties Function Puzzle Design Realization
Primitive proof of Partial preimage search | Sybil-proof Repeated queries to | Yes Yes Single challenge Bitcoin i,
work [23], [86] . -] L Litecoin [92]
via exhaustive queries to cryptographic hash
the random oracle function
rlrgts)}‘ of exercise Matrix product Computation Probabilistic verifica- N/A No Single challenge N/A
delegation tion
VL\J”S)?LU{S%OM of K -orthogonal vector, Computation Non-interactiveness Yes Yes Single challenge with N/A
3SUM, all-pairs shortest | delegation via Fiat-Shamir sequential hash queries
path, etc. transformation
Rf_esm_)urce—effluent N/A Computation Guaranteed by TEE Yes Yes Trusted random oracle | N/A
mining [100] N h A
delegation implemented by dedi-
cated hardware
fert?ioefvggilit (0] Merkle proofs of file Distributed Non-interactiveness Yes Conditional Two-stage challenge i%rm:(r;glgi %18%11
Y fragments in the Merkle | storage via Fiat-Shamir PP
tree transformation and
random Merkle
proofs
PfOOf of space The_ repea _ted proof_of Decentralized Repeated PoR Yes Conditional Two-stage challenge Filecoin [36]
-time [36] retrievability over time
storage market and repeated PoR over
time
Equihash [81] The generalized birthday | ASIC Time-space complex- | Yes Yes Memory-hard ZCash [44]
problem resistance ity trade-off in proof
generation [81]
Ethash [114] Random path searchinga | ASIC Repeated queries to | Yes Yes Sequential, memory- | Ethereum [35]
random DAG resistance cryptographic hash hard puzzle
function
Nnonoutsourceable
scratch-off puzzle | Generalization of proof | Centralization Random Merkle proof | Yes Yes Two-stage challenge N/A
182] of retrievability resistance
Proof of space Merkle proofs of a vertex | Energy Random Merkle proof | Yes Yes Two-stage challenge | SpaceMint [116]
[116] f 18
subset in a random DAG | efficiency and measurement of
proof quality
\’jvr;)r?(f lolfogjuman Radom CAPTCHA puz- Useful work | CAPTCHA and PoW Yes Yes Human in the loop N/A
zle requiring human ef- | and energy
fort efficiency

as a mining worker, since it no longer performs the tasks of
transaction validation or propagation and does not even keep
any blockchain data. On the contrary, only the proxy of the
pool, i.e., the pool server/task operator maintains the replica
of the blockchain. The pool server divides the exhaustive
preimage search for PoW solution into a number of sub-
tasks and outsources them to the mining workerdd. In this
sense, only the pool server can be considered as a node in the
blockchain network. Studies have shown that joining a mining
pool has become the more plausible strategy than working as
an individual consensus node, since such a strategy reduces the
income variance and secures stable profits [4], [61]. However,
this leads to the formation of mining-pool Cartel [61]] and is
against the design goal of Nakamoto consensus in [1], that
“the network is robust in its unstructured simplicity”.

A further study in [58] reveals that under the current
framework of Nakamoto protocols, no incentive is provided for
nodes to propagate the transactions that they are aware of. The
study considers the situation when transaction fees dominate
the block rewards [121]. The analysis in [58] models the
paths of transaction dissemination as a forest of d-ary directed
trees, where each transaction issuer considers its peer nodes

13 According to the Stratum mining protocol [120], the pool server only
needs to send a miner the Merkle root of the transactions in the block (see
Figure [2) and a difficulty level to complete the puzzle solving sub-task.

ViaBTC: 14.5%

(@) (b)
Figure 12. Hash rates controlled by mining pools in (a) Bitcoin (data source:
https://blockchain.info) and (b) Ethereum (data source: https://etherscan.io).

as the tree roots and the nodes on the far end of the network
as the leafs. During transaction dissemination, a consensus
node can add any number of pseudo-identities (a.k.a., fake
identities) before selectively relaying the transaction to any
of its neighbors. It is shown that a consensus node tends to
not broadcast any transaction that offers a fee. By doing so,
it reduces the number of nodes that are aware of the trans-
action and hence the competition of mining that transaction.
An improved protocol is proposed in [58] by introducing
a broadcasting incentive mechanism. More specifically, the
proposed mechanism requires that each relaying node in the
path of transaction propagation shares a uniform portion of
reward with the root (i.e., mining) node, when the height of
the relaying node is small than a predetermined threshold in
the directed tree. The analysis of the new protocol is based

on the formulation of a normal-form game [122], and thus
the equilibrium strategy of each node can be obtained through
iterative removal of dominated strategies. The designed incen-
tive mechanism is shown to guarantee that only the non-Sybil
and information propagating strategies survive in the iterated
removal of weakly dominated strategies, as long as the miners
are connected to sufficient many peers.

Similar studies to enforce honest block/transaction propa-
gation can also be found in [62], [123]. The study in [62]
casts the problem of incentivizing block propagation into the
framework of routing in k-connected networks, where each
rational node can freely choose between relaying and mining
(or both). A protocol of transaction fee-sharing is designed
therein to guarantee that the rational strategy of honest nodes
in the network is to propagate the received transactions. It
is required that a mining node shares the reward of a new
transaction with the relaying nodes in one path between itself
and the client which issues that transaction. According to [58],
creating pseudo-identities does not increase the connectivity
of a node. From such an observation, it is proved in [62] that
assigning the propagation reward of each relaying node as a
decreasing function of the hop count guarantees transaction
propagation, as long as the computing power (or other re-
sources for mining) controlled by each node does not dominate
the network. Comparatively, the study in [123] ensures that
the payment made to the transaction-relaying nodes cannot be
denied by the miners of the new blocks. With the proposed
propagation protocol in [123], each intermediate hop adds
its own signature to the transaction before sending it to the
next hop. While working on their own PoW-puzzle solution,
the relaying nodes freely charge their descendants at least a
minimum fee for propagation. The miner whose block finally
gets confirmed by the blockchain will pay for the propagation
fees to one selected path of nodes. As in [58] the process
of transaction propagation and relaying price competition is
modeled as a non-cooperative game in [123]. It is proved that
with the proposed propagation protocol based on the chain of
signatures, a rational miner’s equilibrium strategy is to always
choose the shortest path, and a rational intermediate node’
equilibrium strategy is to always charge its descendants the
minimum fees for relaying transactions.

When block creation reward dominates the mining reward,
incentive incompatibility may appear in different forms. Intu-
itively, it is plausible for a rational miner to pack up a proper
number of transactions with decent fees in the new block
for profit maximization. However, empty blocks with only
coinbase transaction or blocks with a tiny number of trans-
actions can be frequently observed in the practical blockchain
network¥4. An informal game theoretic analysis in [124]
indicates that the consensus nodes tend to ignore the received
blocks of large size in a flat network and relay the smaller
competing blocks instead. The reason is that large blocks result
in longer delay due to transaction validation, hence increasing
the probability of orphaning any blocks that are mined based
on them. Although mining empty block does not violate the
current Nakamoto protocol, it results in the same situation as a

14See Blocks #492972 in Bitcoin and #3908809 in Ethereum for examples.

Distributed Denial of Service (DDoS) attack [125] by blocking
the confirmation of normal transactions.

Furthermore, the statistical studies in [126], [127] have
shown that the consensus nodes behave rationally and are
prone to prioritize the transactions with higher transaction fees
during block packing. However, when the coinbase reward
dominates the block mining reward, the miners are yet not
incentivized to enforce strictly positive fees [127]. In the case
study of Bitcoin network, extra delays for the small-value
transactions are identified ranging from 20 minutes [127] to
as long as 30 days [126]. Also, it is observed in [127] that
most of the lightweight nodes still set an arbitrary transaction
fee in the real-world scenarios. It is unclear whether the
miners or the transaction issuers adopt best-response strategies
systematically. The study in [128] simplifies the consensus
process as a supply game subject to the trade of a specific
type of physical goods. In the considered scenario, the miners
essentially become the follower players in a two-level hier-
archical/Stackelberg game@ led by the blockchain network,
which is assumed to be able to set the transaction prices.
Then, they are expected to have an incentive for including all
transactions if there exists no block-size limit. On the other
hand, it is pointed out in [98] that, since the block orphaning
probability exponentially grows with the block size, a healthy
transaction fee market does not exist for unlimited block size
due to the physical constraint of link capacity in the network.

Finally, it is worth noting that most of the existing studies
are based on the presumption that the tokens carried by
a blockchain have monetary value and their exchange rate
volatility is small. An optimistic prediction is provided in [59]
based on an assumption excluding any state variables on
the user sider except the belief in “proper functioning of a
cryptocurrency”. In the absence of investors and when the
blockchain is used only for the purpose of remittance, it is
shown in [59] that the tokens of a blockchain network admit a
unique equilibrium exchange rate in each period of the belief
evolution. Conditioned on the survival of a cryptocurrency, the
equilibrium state depends on the excess in users’ valuation
of the blockchain over the other payment options as well as
the supply of the tokens in the market. Together with the
Stackelberg game-based interpretation in [128], it is reasonable
to consider that the equilibrium price of a blockchain token
is determined by the demand-supply relation in the market. It
is worth noting that the data security is only guaranteed by
sufficient POW computation power in the blockchain network.
Currently, except for a few studies such as [129], it is generally
unclear how the impact of security issues is reflected in the
users’ valuation of the blockchain. As a result, whether the
security requirement of the Nakamoto protocol is compatible
with the market clearing price remains an open question.

B. Resource Investment and Transaction Selection for Mining
under Nakamoto Protocols

According to (@), an honest consensus node has to invest in
the mining resources, e.g., hashrates, disk space, etc, to win

15 A Stackelberg game is characterized by the sequential play of leaders and
followers, where the leaders may expect better equilibrium payoffs [122].

the puzzle solution competition under Nakamoto consensus
protocols. Intuitively, the more resources a miner casts into
the network, the higher chance the miner has to win the
puzzle competition and obtain the mining reward. However,
the success is not guaranteed because this also depends on
the mining resources of other miners. Since mining resources
are usually expensive, how to properly invest in the mining
resources to maximize the profit is a big concern of the miners.

The study in [130] abstracts the mining investment in the
Bitcoin network as the energy consumption cost. It is assumed
that IV active miners in the network are competing in the “all-
pay contest” for block-mining rewards. The cost of presenting
a unit mining resource by each miner may be different, e.g.,
with different electricity prices in different areas. The miners
determine how much to invest in mining resources (hashrates)
such that the expected profit is maximized. This forms a non-
cooperative game among the miners. Analysis of the game’s
unique Nash equilibrium in [130] shows that the decision of
a miner to participate in the mining process or not solely
depends on its individual mining cost, as long as the block
reward is positive. Meanwhile, the structure of the formulated
mining game prevents the emergence of a monopolistic mining
activity. Namely, it is guaranteed that at least two miners will
remain active in the game with positive expected profits.

By (@ and (7), even if a miner succeeds in the puzzle
solution competition, it is still possible for the proposed block
to get orphaned due to the propagation delay. For ease of
exposition, we can assume that all transactions in a block
set the same amount of transactions fee F'. Let R denote the
fixed reward for block generation and m denote the number of
transactions in the block. Then, the revenue to mine this block
is R+ mF'. Apparently, a rational miner expects to include
as many as possible transactions in a block to maximize the
received reward. However, due to the risk of block orphaning,
a miner also has to carefully balance the tradeoff between
the mining reward and the risk of block orphaning. In [98],
the author proposes a mining profit model by assuming the
propagation delay of a block to follow a Poisson distribution.
Thus, the orphaning probability can be approximated by (7).
Let n denote the monetary cost per hash query and « denote
the probability for the miner being the leader (see also (3)).
Then, for an average block arrival duration 7" and block
propagation time 7, a miner’s profit can be modeled as follows:

U= (R+ F)pe T —nhT. (12)

The profit model in (I2) is capable of reflecting the impact of
miners’ strategies in both resource investment and transaction
selection. Therefore, this model is especially appropriate for
game-theoretic formulation of mining resource management
problems. Recently, (I2) and its variation have been adopted
to construct the payoff function of miners by a series of
studies, which propose to use different game-based models,
e.g., evolutionary game [97], hierarchical game [131] and
auctions [132]], to capture the rational behaviors of individual
miners in different network setups.

In [133], an alternative model of winning probability is
proposed to explicitly capture the influence of the adversary

miners’ strategy of block-size selection. We denote s; as
block size of miner 7 in a blockchain network and w; as its
computational power. Then, the block winning probability of
miner ¢ can be express% by [133]:
P i | A !
prim =1 e~ T
r J7i
where ¢ is the time when all miners start mining a new block
and 7(s;j) is the time needed for a block with size s; to reach
consensus. In (I3), the first and second terms represent the
probability for miner i to first solve the puzzle based on its
block, for this block to be the first one reaching the consensus
across the network, respectively. (I3) implies that the strategy
of mining a large block may have positive externalities to other
miners in the network. By analyzing the Nash equilibrium of
the non-cooperative mining game with two miners, the author
of [133]] shows an interesting result, namely, the miner with
higher computational power will prefer blocks of larger sizes.
Meanwhile, the author also discusses the scenarios in which
the Nash equilibrium is a breaking point, i.e., miners adopt the
strategy of including no transaction in their proposed blocks.
The studies in [98] and [133] essentially assume that the
mining process is synchronized and all miners honestly follow
the rules of block/transaction propagation in Nakamoto proto-
cols. However, such assumptions may not be met in practical
scenarios. Thus, related strategies may not be the miners’ best
response and further investigation is needed on this topic.

(13)

C. Rational Mining and Exploitation of Nakamoto Protocols

The discussions on the incentive compatibility of Nakamoto
protocols and the strategies of resource investment lead to
the following question: is it possible for a rational miner to
exploit the vulnerability of Nakamoto Protocols and find a
strategy leading to the reward more than that in proportion to
the devoted resources? In this section, we will further devote
our survey on the existing analysis of this problem.

1) Selfish Mining Strategy: The study in [61] shows that
selfish miners may get higher payoffs by violating the informa-
tion propagation protocols and postponing their mined blocks.
Specifically, a selfish miner may hold its newly discovered
block and continue mining on this block secretly. Thereby, the
selfish miner exploits the inherent block forking phenomenon
of Nakamoto protocols. In this case, honest miners in the
network continue their mining based on the publicly known
view of the blockchain, while the selfish miners mine on their
private branches. If a selfish miner discovers more blocks in
the same time interval, it will develop a private longer branch
of the blockchain. When the length of the public chain known
by honest miners approaches that of the selfish miner’s private
chain, the selfish miner will reveal its private chain to the
network. According to the longest-chain rule, the honest nodes
will discard the public chain immediately when they learn the
longer view of the chain from the selfish miner. Such a strategy
of intentionally forking results in the situation of wasted
computation by the honest miners, while the revenue of the
selfish miner can be significantly higher than strictly following
the block revealing protocol. More seriously, if selfish miners

a a a
offoloRofion:
l-a 1-a 1-a

I-a

Figure 13. Blockchain state transition in the presence of a selfish pool
(adapted from [61]).

collude and form a selfish mining pool with a sufficiently large
amount of computational power, other rational miners will be
forced to join the selfish mining pool, which can devastate the
blockchain network [61].

In [61], the authors introduce an approach based on the
Markov chain model to analyze the behavior as well as
performance of a selfish mining pool. Figure [I3 illustrates
the progress of the blockchain as a state machine. The states
of the system, i.e., the numbers in the circles represent the
lead of the selfish pool in terms of the difference in block
number between the private branch and the public branch. In
Figure [I3] state O is the original state when the selfish pool
has the same view as the public chain. State 0’ indicates that
two branches of the same length are published in the network
by the selfish pool and the honest miners, respectively. The
transitions in Figure [L3] correspond to the mining event, i.e.,
a new block is mined either by the selfish pool or the honest
miners. « in Figure [I3 represents the computational power of
the selfish mining pool. Note that the transition from state 0
to state 0’ depends on not only the computational power of
the selfish pool, but also the fraction, i.e., u of honest miners
that mine on the selfish pool’s branch. In [61], the analysis on
the steady state probability of the Markov chain leads to the
following two important observations:

« For a given p, a selfish pool of size « obtains a revenue

larger than its relative size in the range of % <a<i

. . . K 2

« A threshold on the selfish-pool size exists such that each
pool member’s revenue increases with the pool size.

Extended from [61], the study in [134] introduces a new
mining strategy known as the stubborn mining strategy, which
is supposed to outperform the typical selfish mining strategy.
The key idea behind the stubborn mining strategy is that the
selfish miner is stubborn and may only publish part of the
private blocks even when it loses the lead to the honest nodes.
As shown in Figure [I4] the major difference between the two
selfish strategies lies in how the selfish miner publishes the
private blocks. For example, at state 2, the typical selfish miner
will immediately publish all the private blocks once the lead
to the honest miners decreases by one block (see Figure [13).
Then, the system transits to state 0. In contrast, every time
when the honest miners mine a new block, the stubborn miner
will stubbornly reveal one block of the private chain, even
by doing so it will lose the lead. Simulations in [61] show
that stubborn mining achieves up to 13.94% higher gains than
selfish mining strategy.

Furthermore, the study in [134] also introduces another two
extensions of the stubborn mining strategy, namely, the Equal-
Fork Stubborn (EFS) and the Trail Stubborn (TS) mining
strategies (see Figure [I5). In Figure [I5] state -1 indicates that

(1-w(1-a) Lead stubborn mining
-W)(1-a Lead stubborn mining

H1-a)
Selfish mining

o i it

‘\’1’.‘(‘1/

Figure 14. Lead-stubborn mining. The black and purple transitions together
define the selfish mining state machine. The black and green transitions define
the stage machine of lead-stubborn mining (adapted from [134]).

(1o (1o (1o (L-p)a (o

Lead stubborn mining

, {
7 -

/ wil-a)i | ;
S/ l-a_ %Y Selfishmining_____________ >
}"r -
‘;:,\\ > Trial stubborn mining _ _ |
~ .
\ AN } iTa T-a 1-a 1-a
\ N
\ \0: | Equal-Fork stubborn mining,
AN e
N
1-oN v
~ v
o

Figure 15. Lead, Equal-Fork, and Trail Stubborn mining. Black and purple
transitions denote selfish mining. Black and green transitions denote lead-
stubborn mining. Black and blue transitions denote Equal-Fork stubborn
mining. Black and brown transitions denote Trail-stubborn mining (adapted
from [134]).

the public chain is one block longer than the private chain.
As indicated by the transitions from other states to state -1,
the TS miner is more stubborn and keeps mining on the secret
branch even when it is one block behind the public chain. From
state -1, when the TS miner finds one new block ahead of the
honest miners, the system will transit to state 0”. Namely, the
private chain catches up with the public chain and the block
numbers on both chains are equal. In contrast, if the honest
miners find a new block ahead of the ST miner, the system
transits to state 0. Namely, the ST miner starts to mine new
blocks based on the public chain. Here, the difference between
state 0" and state 0’ lies in that only the ST miner knows the
existence of the private chain in state 0", while in state 0’ the
honest miners can freely choose to mine on one of the two
chains. The comparisons between the three stubborn mining
strategies are given in Figure 5] Simulations in [134] show
that stubborn mining strategies can improve the profit by up to
25% than the original selfish mining strategy proposed in [61].

The author in [135] studies the impact of transaction fees on
selfish mining strategies in the Bitcoin network. Note that due
to the inherent design of the token issuing scheme in Bitcoin,
the constant mining reward of each block halves every time
when a fixed interval of blocks, i.e., every 210,000 blocks, is
generated. Then, it is natural to increase the transaction fee
to compensate for the mining cost of the consensus nodes.
The arbitrary levels of transaction fees lead to a situation
where some hidden blocks may have very high values. As
a result, selfish miners want to publish it immediately due
to the risk of orphaning. Hence, in the revised Markov chain
model for selfish mining in Figure the author introduces
a new state 0”. State 0" is almost identical to state 0, except

Figure 16. Improved Markov model for selfish mining with transaction fees
(adapted from [135]).

that, if the selfish miner mines on the next block in state 0",
it will immediately publish that block instead of holding it.
Compared with the original selfish mining model in Figure [13]
state O transits to state 1 with probability a(1 — e~P) and to
state 0" with probability ce =P, where 3 is the size of the
mining block. The new factor 3 is introduced to model the
impact of transaction fees on the miner’s decisions. With the
revised transition probability, if the selfish miner finds a block
of high value in state 0, it may publish the block (i.e., transiting
to state 0”) instead of holding it (i.e., transiting to state 1).
The analysis in [135] shows that this improved selfish mining
strategy leads to positive profit for all miners regardless of
their hashrates.

From the aforementioned Markov models, we note that
the selfish miner may adopt various policies by choosing to
release an arbitrary number of block in each state. In [136]-
[138], a Markov Decision Process (MDP) model is proposed to
generalize such a process of policy derivation. As an example,
the study in [136] considers the honest miners as non-adaptive
players following the Nakamoto protocol. Then, the problem
of searching optimal selfish-mining strategy can be modeled
as a single-player MDP. Four actions are considered to control
the state transitions in the MDP:

o Adopt: the selfish miner accepts the honest network’s
chain and all private blocks are discarded;

o Override: when taking the lead, the selfish miner pub-
lishes its private blocks such that the honest network
discards its current view;

« Match: the selfish miner publishes a conflicting branch
of the same height. A fraction of the honest network will
fork on this branch;

o Wait: the selfish miner does not publish new blocks and
keeps working on its private branch.

The state the MDP is defined by the difference in block lengths
between the selfish miner and the honest network as well as
the situation of computation forking among the honest miners.
By controlling the maximum difference in block lengths, it
is possible to obtain a finite-state MDP. Using standard MDP
solution techniques, an e-optimal policy for selfish mining can
be obtained based on such a truncated-state MDP.

In [139], the authors consider a similar mining competition
between a selfish mining pool and the honest nodes. The study
in [139] extends the model of selfish mining by considering
the propagation delay between the selfish mining pool and the
honest community. The delay is assumed to be exponentially
distributed with rate p. The block-mining Markov model
in [139] adopts a 2-dimensional state of (k,), which denotes
the length of blocks built by the pool and the community upon

the common prefix blocks, respectively. Let A; and A, denote
the block-arrival rate for the pool and the community. The
authors then derive the following transition rates of the block
mining system:

I:ll k:+1lI:—|/\ k>0,1>0
qlﬁ:a)7(7)|:_| 1, Z U, L = U,
q (k, (k7l+1)|:—TA2, k>0,1>0,
¢ (k,0),(0,0) 4, k<, (14)
— = >
q (kal%l 1), (O’O)EI i, k 2 2,
q (k,0), (k1) =0, otherwise.

Based on this transition map, the authors in [139] propose to
detect selfish mining behaviors by monitoring the proportion
of orphaned blocks. Specifically, if there is a significant
increase in the fraction of orphaned blocks, it is highly possible
that selfish mining exists in the network.

In [140], the authors adopt a more general assumption of
multiple selfish miners in a Bayesian game-based formula-
tion2d. In the considered game, miners decide on whether to
report a new block (R), i.e., to mine honestly, or not (NR), i.e.,
to mine selfishly. When a miner makes a decision, it does not
know whether it is the real leader of the mining competition,
or whether some other miners have secretly started mining
on their private blocks. To ease the analysis of this mining
game with incomplete information, the authors assume that
a miner always reports when it finds two successive blocks.
With this extra assumption, a decision tree can be constructed
(see Figure [I7), and the backward induction approach is
adopted to find the miners’ equilibrium strategies. Figure [I7]
presents the decision tree in a case of three miners. In the
presented subgame, miner 1 believes that it is the real leader
of the mining competition. Here, let h; denote the normalized
computational power of miner 4, and pj(hi) denote miner i’s
belief of being the leader of the puzzle solution competition.
From the decision tree and following the Bayesian rule, we can
obtain the information about the states, transition probabilities,
and expected payoffs after miner 1 takes the action of NR. The
authors provide the condition on the fraction of computational
power for action NR to become the optimal mining strategy.

2) Block Withholding in Pool-Based Mining: Block with-
holding (BWH) is a mining strategy used by selfish miners
to increase their revenues through diminishing the winning
probability of honest miners in mining pools [142], [143].
In [143], the authors study the impact of BWH on the Bitcoin
network. It is assumed that a selfish miner is able to split
the computational power into different mining pools. It may
spend most of its computational power to honestly mine on one
pool, and use the rest computational power to perform BWH
on the other pools. The mining pools are supposed to adopt
the pay-per-share protocol [66, Section 2.2]. In the victim
mining pools, the selfish miner submits all shared™ to the
pool operators except the valid puzzle solutions. Although this

16 A Bayesian game [141] Chapter 4] describes the situation when players
are of incomplete information. The players’ payoffs are determined not only
by their strategies but also by their types, which they may not be fully aware
during the play.

17A share is a preimage solution for a block that meets the relaxed (i.e.,
approximated) difficulty requirement set by the pool. A miner receives its
reward in proportion to the number of shares that it submits to the pool.

[2,0,0] 3 [0,1,1] [2,0,0] [0,2,0] o
[0,2,0] [1,0,1]

h2 h2 2 h2
[2,0,0] [0,2,0] [0,0,2] [20,0] [0,20] [0,02] [2,00] [0,2,0] [0,0,2] [2,0,0] [0,2,0] [0,0,2]

Figure 17. An illustration of the Bayesian mining game (adapted from [140]).
Miner 1 believes that its is the real leader of the puzzle solving competition
and decides to take action NR. Here o is the probability for miners to mine
on the first block when they receive two blocks in a short time.

mining strategy reduces the attacker’s revenue in the attacked
pools, it will increase the attacker’s revenue in the pool that
it chooses to mine honestly. A computational power splitting
game with multiple players is formulated in [143]. In the game,
one selfish miner adopts BWH and all the other miners mine
honestly. The selfish miner chooses which pools to attack and
how much computational power to allocate in the targeted
pools. It is shown that the attacker always gains positive reward
by mining dishonestly regardless of its mining power. This
finding implies a risk for big mining pools to dominate the
network through BWH attacks on smaller mining pools.

The study in [[144] considers a more complicated case where
mining pools attack each other with BWH. The author of [144]
considers a scenario of two mining pools which attempt to
send their miners to each other to diminish their opponents.
As illustrated in Figure pool P; uses x3» out of the my
computational power to attack pool P,. Meanwhile, pool P,
uses xp; out of the m, computational power to attack pool
Py. Then, the revenue of each pool can be derived as follows:

_ mq — 212
m—T12 —T21 (15)
_ m2 — 21
Ry =

m— 12 — T2’
where m is the total mining power in the blockchain network.

By [144], the revenues of the pools can be expressed as the
functions of x12 and x21:

ma Ry + z12(R1 + Rp)
mamy + mir12 + Moz’

m1 Ry + z21(R1 + R)
mima + mirip + maxar
Thus, by observing the attack rate of its opponent, a mining
pool can adjust its attack rate in the next round to maximize its
long-term revenue through repeated plays. The analysis of this
repeated game reveals that the game admits a unique equilib-
rium, and the pool size will be the main factor that determines
the attacking rates of each pool. A similar conclusion about
the impact of the pool size on BWH attacks between two pools
can also be found in [121].

r1(z12,x21) =
(16)

ro(z21,212) =

Figure 18. Block withholding attacks between two miners.

Extended from the studies in [143], [144], it is found out
in [145] that when a mining pool performs a BWH attack
to a victim mining pool, the other mining pools will benefit
from this attack even if they do not adopt BWH. Thus, the
other pools are interested in sponsoring the attacker to launch
the BWH attack to the victim pool. Consequently, the expected
gain of the attacker will be greater than the case in [143]. This
implies that miners have more incentives to perform BWH
attacks with the Nakamoto consensus protocols.

To alleviate the impact of BWH attacks, modifications to
the Nakamoto protocol and the pool-mining protocols are
suggested in the literature. The author in [66] proposes that
the pool operator should insert mining tasks for which the
solutions are known in advance, and tag the miners that do
not submit the results. Since it is difficult to find puzzles with
expected solutions, the author suggests that some new data
fields should be added to the conventional block data structure
(see Figure[2). These fields enable the pool operator to allocate
mining tasks to its miners, but the miners are unable to know
the exact puzzle solutions. Alternatively, in [146], the authors
propose to give an extra reward to the miners that find the
valid blocks, hence reducing the revenue of selfish miners and
discouraging BWH attacks.

3) Lie-in-Wait Mining in Pools: Lie-in-wait (LIW) is a
strategic attack where a selfish miner postpones submitting
the block that it finds to a mining pool, and uses all of its
computational power resources to mine on that pool [66]. In
this case, an attacker is assumed to first split its computational
power to mine in different pools. Then, if it finds a block in
a pool, instead of submitting the block to get the reward from
the pool, the attacker holds the block, and concentrates all of
its computational power in other pools to mine on the pool
where it finds the block. However, the attacker may take a
risk by not releasing the block immediately and concentrating
all the computational resources on the target pool. The reason
is that if one of other pools finds a new block before this
block is published, the selfish miner will lose its reward as
well as suffer from the cost of mining in the target pool.
It is shown in [66] that the success of attacks follows an
exponential distribution, and the maximum expected gain of
the LIW attacker is solely determined by the pool numbers
and block interval in the network.

4) Pool Hopping Strategy: With the strategy of pool hop-
ping, the miners exploit the vulnerability of the payment
mechanism of mining pools to increase their own profits. With
the pay-per-share protocol, the number of submitted shares in
one block competition round follows a geometric distribution
with success parameter 6 and mean D [66]. For I shares

Table IV
SUMMARY OF SELFISH MINING STRATEGIES AND THEIR INCURRED RISKS IN BLOCKCHAIN NETWORKS

Attacks Selfish mining Block withholding Lie-in-wait Pool hopping

References 1611, T134]-[L36], [139], [140] 2211, [143]-[146] [661 [66]

Concept After finding a new block, After finding a new block After finding a new block in The attacker moves to

the attacker hides the block in the victim pool, the a mining pool, the attacker another pool or start mining
and continues mining on attacker discards that block holds the block and uses by himself when the
the mined block secretly. and continues mining on its all the computational power mining time at its current
block in another pool. to mine on that pool. pool reaches a threshold.
Risks A new attacker’s found block The attacker loses its The attacker can lose its There is no risk and

of can be discarded if one of

reward at the victim pool

reward for its mined block loss for the attacker if

method and blockchain update rule.

attackers other miners finds a new block if it finds a new block and all computational power its mining pools use
before it finds a next new block. in this pool. at the pool it found the block. pay-per-share protocol.
Risks Lose their rewards for Lose their rewards Can lose their rewards if the Their profits will be
of their mined blocks. for blocks found block found by the attacker reduced if they are in
honest by attackers. in their mining pool is mining pools using
miners discarded from the network. pay-per-share protocol.
Suggested Modification to the mining protocol, Modification to the task assignment | Modification to the task assignment Change the payment
solutions e.g., blockchain propagation protocol in pools such that protocol in pools such that method for mining pools.

miners do not know real
results of their mining tasks.

miners do not know real
results of their mining tasks.

submitted to a pool, the pool still needs D more shares on
average to mine the block. When ignoring the transaction
fees, the more shares submitted to a pool in a round, the
less each share is worth. Since a miner immediately receives
the payment for the submitted share, this implies that a share
submitted early may have a higher reward. Therefore, a selfish
miner can benefit by mining only at the early stage of a round,
and then hop to other pools to increase his revenue. The study
in [66] shows that there exists a critical point measured in
the number of submitted shares. The best strategy of a selfish
miner is to mine on a pool until this point is reached, then
hop to another pool or mine by himself.

One straightforward way to address the block hopping
problem in pay-per-share mining pools is to increase the
value of shares at the end of each round. The pool operator
may score the shares according to the elapsed time since
the beginning of each round. A share can be scored by an
exponential score function s(t) = e, where ¢ is the time
stamp of the submitted share and § is a parameter controlling
the scoring rate of shares. With the help of share scoring, we
can handle pool hopping attacks in mining pools by decreasing
the score of shares at the beginning and increasing the score of
shares later. Such score-based method is also known as Slush’s
method and has been implemented in the mining pools such
as Slushpool [147]. In [66], other incentive mechanisms such
as pay-per-last-N-shares and payment-contract-based methods
are also sketched. However, analytical studies on these mech-
anisms are missing and their effectiveness in preventing pool
hopping attacks still remain an open issue.

V. VIRTUAL BLOCK MINING AND HYBRID CONSENSUS
MECHANISMS BEYOND PROOF OF CONCEPTS

With the consensus protocols and the related issues reviewed
in Sections M and V] a natural question arises regarding
whether it is possible to simulate the random leader-election
process among permissionless nodes in an approach other
than under the framework of Nakamoto-like protocols. To
answer this question, we focus on the designing methodology
of the virtual-mining protocols in this section. Then, we
further introduce a category of protocol design aiming at

performance improvement by combining the properties of both
the permissionless protocols and the classical BFT protocols.

A. Proof of Stake and Virtual Mining

The concept of PoS was first proposed by Peercoin [76] as
a modified PoW scheme to reduce the energy depletion due to
exhaustive hash queries. Peercoin proposes a metric of “coin
age” to measure the miner’s stake as the product between the
held tokens and the holding time for them. Miner i solves
a PoW puzzle as in (@) with an individual difficulty D(h;).
The Peercoin kernel protocol allows a miner to consume its
“coin ages” to reduce the difficulty i.e., hj, for puzzle solution.
The public verification of the “coin ages” is done through
empirically estimating the holding time of the miner’s Unspent
Transaction Outpu (UTXO) based on the latest block on the
public chain.

By completely removing the structure of PoW-based leader
election, the protocols of pure PoS are proposed in [33], [77],
[78], [148]. To simulate a verifiable random function following
the stake distribution (see also (2)), an algorithm, follow-the-
coin (a.k.a., follow-the-satoshi), has been proposed by [78]
and widely adopted by these workd™. Here, the terms “coin”
or “satoshi” are used to indicate the minimum unit of the
digital tokens carried by the blockchain. Briefly, all the tokens
in circulation are indexed, for example, between 0 and the
total number of available coins in the blockchain network. A
simplified PoS protocol can use the header of block ¢ — 1 to
seed the follow-the-coin algorithm and determine the random
mining leader for block ¢. Specifically, the hash function #(-)
is queried with the header of block ¢—1, and the output is used
as the random token index to initialize the searching algorithm.
The algorithm traces back to the minting block (i.e., the first
coinbase transaction [33]]) for that token or the UTXO account
that currently stores it [78]. Then, the creator or the holder of
the token is designated as the leader for generating block .
To enable public verification of the block, the valid leader is

18A UTXO is a transaction output whose value has not been spent by the
receiver. It can be used as the input of a new transaction. Bitcoin-like networks
sum up all the existing UTXOs of an account to recover its balance state.

19A reference implementation in Python (see also [78]) can be found at
http://www.cs.technion.ac.il/~ idddo/test-fts.py!

http://www.cs.technion.ac.il/~idddo/test-fts.py

required to insert in the new block its signature, which replaces
the data field “nonce” for PoW-based blockchains.

It is worth emphasizing that the pure PoS protocols do not
rely on a Poisson process-based puzzle solution competition to
simulate the random generator of the block leader. Therefore,
the ZK puzzle-solving process can be simply replaced by the
process of asymmetric key-based signing and verification, and
the proof of resource is no longer needed. For this reason, PoS
is also known as a process of “virtual mining” [4] since the
block miners do not consume any resources. In the literature,
a number of protocol proposals are claimed to be able to
(partially) achieve the same purpose. However, these protocols
either need special hardware support, e.g., Intel SGX-enabled
TEEs for proof of luck/elapsed-time/ownership [[79], [149], or
are still under the framework of PoW, e.g., Proof of Burn
(PoB) [1150], Proof of Stake-Velocity (PoSV) [151] and “PoS”
using coin age [76]. Strictly speaking, they cannot be con-
sidered as the real virtual mining schemes in permissionless
blockchain networks.

Compared with the PoX-based protocols, PoS keeps the
longest-chain rule but adopts an alternative approach for
simulating the verifiable random function of block-leader gen-
eration. For this reason, the same framework for analyzing the
properties of Byzantine agreements in PoW-based blockchain
networks [23] can be readily used for the quantitative analysis
of PoS protocols. For example, the investigations in [[77], [152]
mathematically evaluate the properties of common prefix,
chain quality and chain growth based on the same definition in
Table [l The authors propose in [[77] the “Ouroboros” proto-
col, and consider that the stakes are distributed at the genesis
block by an ideal distribution functionality. By assuming an
uncorrupted ideal sampling functionality, Ouroboros guaran-
tees that a unique leader is elected in each block generation
round following the stake distribution among the stakeholders
(see also (2)). With Ouroboros, forking no longer occurs when
all the nodes are honest. However, when adversary exists,
forking may be caused by the adversarial leader through
broadcasting multiple blocks in a single round. The study
in [[77] shows that the probability for honest nodes to fork
the blockchain with a divergence of k& blocks in m rounds
is no more than exp(—Q(k) + In(m)) under the condition of
honest majority. It is further shown that the properties of chain
growth and chain quality are also guaranteed with negligible
probability of being violated.

The studies in [78], [152] introduce the mechanism of
epoch-based committee selection, which dynamically selects a
committee of consensus nodes for block generation/validation
during an epoch (i.e., a number of rounds). Compared with
the single-leader PoS protocol, i.e., Ouroboros [77] and its
asynchronous variation [153]], the committee-based PoS gears
the protocol design toward the leader-verifier framework of
traditional BFT protocols (see also Figure [6). In [78], the
scheme of Proof of Activity (PoA) is proposed with the em-
phasis that only the active stake-holding nodes get rewarded.
The PoA is featured by the design that the leader is still
elected through a standard PoW-based puzzle competition, and
is only responsible for publishing an empty block. Using the
header of this block to seed the follow-the-coin algorithm, a

committee of IV ordered stakeholders is elected and guaranteed
to be publicly verifiable. The first NV — 1 stakeholders work
as the endorsers of the new empty block by signing it with
their private keys. The N-th stakeholder is responsible for
including the transactions into that block. The transaction fees
are shared among the committee members and the block miner.
In this sense, POA can be categorized as a hybrid protocol that
integrates both PoW and PoS schemes.

In [152], the authors propose a protocol called “Snow
White”, which uses a similar scheme to select a committee
of nodes as in [78]. However, only the selected committee
members are eligible for running for the election of the block
generation leader. Under the Snow White protocol, the leader
of an epoch is elected through a competition based on repeated
preimage search with the hash function. At this stage, the
difference of Snow White from the standard PoW puzzle in
(@) is that the hash function is seeded with the time stamp
instead of an arbitrary nonce. Like PoA, Snow White also
pertains the characteristics of a hybrid protocol. The analysis
in [152] shows that the proposed protocol supports frequent
committee reconfigurations and is able to tolerate nodes that
are corrupted or offline in the committee.

The recent proposal by Ethereum, Casper [154] provides
an alternative design of PoS that is more similar to traditional
BFT protocols. The current proposal of Casper does not aim
to be an independent blockchain consensus protocol, since it
provides no approach of leader election for block proposal.
Instead, the stakeholders join the set of validators and work as
the peer nodes in a BFT protocol. The validators can broadcast
a vote message specifying which block in the blockchain is
to be finalized. The validator’s vote is not associated with its
identity, but with the stake that it holds. According to [[154],
Casper provides plausible liveness (instead of probabilistic
liveness with PoW) and accountable safety, which tolerate up
to 1/3 of the overall voting power (weighted by stake) that is
controlled by the Byzantine nodes.

B. Issues of Incentive Compatibility in PoS

Regarding the incentive compatibility of PoS, an informal
analysis in [77] shows that being honest is a 6-Nash equilib-
riun@ strategy when the stakes of the malicious nodes are
less than a certain threshold and the endorsers are insensitive
to transaction validation cost. However, a number of vulner-
abilities are also identified in PoS. In [155], the nothing-at-
stake attack is considered. In order to maximize the profits, a
block leader could generate conflicting blocks on all possible
forks with “nothing at stake”, since generating a PoS block
consumes no more resource than generating a signature. A
dedicated digital signature scheme is proposed to enable any
node to reveal the identity of the block leader if conflicting
blocks at the same height are found. Alternatively, a rule of
“three strikes” is proposed in [33] to blacklist the stakeholder
who is eligible for block creation but fails to properly do so for
three consecutive times. In addition, an elected mining leader
is also required to sign an auxiliary output to prove that it

20At a 8-NE, the payoff of each player is within a distance of & > 0 from
the equilibrium payoff.

provides some extra amount tokens as the “deposit”. In case
that this node is malicious and broadcasts more than one block,
any miner among the consecutive block creation leaders can
include this output as an evidence in their block to confiscate
the attacker’s deposit. Such a scheme is specifically designed
to disincentivize block forking by the round leader.

Grinding attack is another type of attacks targeting PoS [77].
With PoS, the committee or the leader is usually determined
before a round of mining starts. Then, the attacker has in-
centive to influence the leader/committee election process in
an epoch to improve its chances of being selected in the
future. When the verifiable random generator takes as input
the header of the most recent block for leader/committee
election, the attacker may test several possible block headers
with different content to improve the chance of being selected
in the future (e.g., [77], [[78]). It is expected to use an unbiased,
unpredictable random generator to neutralize such a risk [77].
In practice, the protocol usually selects an existing block that
is a certain number of blocks deep to seed the random function
instead of using the current one [78], [152].

With all the aforementioned studies, a significant limit of
the existing analyses about PoS-based protocols lies in the
simplified assumption that ignores the stake trade outside the
blockchain network (e.g., at an exchange market) [156]. A
study in [157] provides a counterexample for the persistence
of PoS in such a situation. The study in [157] assumes no
liquidity constraint in a blockchain network, where nodes own
the same stake at the beginning stage. The author of [157]
considers a situation where a determined, powerful attacker
attempts to destroy the value of the blockchain by repeatedly
buying the stake from each of the other nodes at a fixed
price. After taking into account the belief of the nodes that
the attacker will buy more tokens, the interaction between
the attackers and the stakeholders is modeled as a Bayesian
repeated game. The study concludes that the success of the
attack depends on two factors, namely, the attacker’s valuation
of the event “destroying the blockchain” and the profit (e.g.,
monetary interest) that the nodes can obtain from holding the
stake. When the former factor is large and the latter is small,
the nodes in the network will end up in a competition to sell
their stakes to the attackers. As a result, the blockchain can
be destroyed at no cost.

C. Hybrid Consensus Protocols

Despite the unique characteristics of permissionless con-
sensus protocols, public blockchain networks are known to be
limited in performance (e.g., transaction throughput) due to the
scalability-performance tradeoff [18]. To boost permissionless
consensus without undermining the inherent features such as
scalability, a plausible approach is to combine a permissionless
consensus mechanism (e.g., Nakamoto protocol) with a fast
permissioned consensus protocol (e.g., BFT). Following our
previous discussion (cf. PoA [78] and Casper [154]), we study
in this subsection how a standard permissionless consensus
protocol can be improved by incorporating (part of) another
consensus protocol in the blockchain networks.

In [158], the protocol “Bitcoin-NG” is proposed to extend
the PoW-based Nakamoto protocols. The prominent feature

of Bitcoin-NG is to decouple the consensus process in a
blockchain network (e.g., Bitcoin network) into two planes:
leader election and transaction serialization. To bootstrap the
transaction throughput, the protocol introduces two types of
blocks, namely, the key blocks that require a PoW puzzle
solution for leader election and the microblocks that require
no puzzle solution and are used for transaction serialization.
The time interval between two key blocks is known as an
epoch. In an epoch, the same leader is allowed to publish
microblocks with the limited rate and block size. Although
operation decoupling in Bitcoin-NG does not ensure strong
consistency, it paves the way for incorporating additional
mechanisms on the basis of standard Nakamoto protocols.

Following the methodology of [158], hybrid consensus
mechanisms atop Nakamoto protocols are proposed in [[159],
[160] with the goal of providing strong consistency and
immediate finality. In [159], the “PeerCensus” protocol is
proposed by decoupling block creation and transaction com-
mitting/confirmation. PeerCensus consists of two core com-
ponents, namely, a PoW scheme named as BlockChain (BC)
and a BFT-based scheme named as Chain Agreement (CA).
With the proposed BC protocol, nodes acquire the voting right
of the CA protocol when they propose new blocks through
PoW and are approved by the committee of CA. The CA
protocol is adapted from BFT protocols such as PBFT [17]
and the Secure Group Membership Protocol (SGMP) [161].
Through the four stages of propose, pre-prepare, prepare, and
commit of BFT protocols (cf. Figure @), CA designates the
miner of the newest block in the chain as the leader for the
next block proposal. The leader proposes one from the multiple
candidate blocks obtained in BC. The peer nodes in the com-
mittee extend the pre-prepare stage with an operation of block
validation. The design of PeerCensus ensures that committing
transactions (i.e., CA) is independent of block generation (i.e.,
BC). Therefore, no forking occurs in the condition of honest
majority and strong consistency is guaranteed.

In [160], a hybrid consensus protocol is proposed by com-
bining the data framework of two-type blocks in Bitcoin-
NG and the hybrid POW-BFT design in PeerCensus. As in
PeerCensus, the Nakamoto protocol is used to construct a
“snailchain”, which is allowed to commit transactions from
a specific mempool of outstanding transactions known as the
“snailpool”. Following the quantitative analysis of the common
prefix blocks in a chain in [23], only a fixed number of
miners whose recently minted blocks are a certain number of
blocks deep in the chain can be used to form the committee
for the BFT protocol. In contrast to PeerCensus, the BFT
committee of miners in the proposed protocol has no influence
on how the next block on the snailchain is determined.
Instead, it is responsible for committing transactions from
an independent mempool known as the “txpool”. For this
reason, the transactions approved by the BFT protocol are
committed off the snailchain without relying on any mining
mechanism. In this sense, these transactions can be considered
similar to those in the microblocks of Bitcoin-NG. The hybrid
consensus protocol in [160] explicitly addresses the problem
of BFT-committee scalability in PeerCensus and provides a
secured (with theoretical proof) consensus property of imme-

Blockchain growth
o T

Sliding window for proof of membership

-

1 /
1 L4
s
s

A
|
|
|
|
¢ I
1
|
L

Block

[Woting weight

D BFT member

Peer

Figure 19. Illlustration of BFT-committee formation with weighted votin
power. Valid weights are only credited to the miners of the blocks in th
sliding window (adapted from [162]).

diate finality. Namely, the transaction confirmation time fror

the txpool only depends on the network’s actual propagation
delay. The method of using Nakamoto protocols to select
nodes into a BFT committee is also known as the proof of
membership mechanism [162]. A sliding-window mechanism
is proposed in [[162] to generalize the mechanisms of dynamic
BFT-committee selection in [159], [160]. As illustrated in
Figure the BFT committee is maintained by a fixed-size
sliding window over the PoW-based blockchain. The sliding
window moves forward along the blockchain as new blocks
are appended/confirmed. Consensus nodes minting multiple
blocks in the window are allowed to create the same number
of pseudo-identities in the BFT consensus process to gain the
proportional voting power.

For hybrid consensus using BFT protocols to guaran-
tee strong consistency, a natural thinking is to replace the
Nakamoto protocols with virtual mining (e.g., PoS) for se-
lecting the leader or committee in BFT-consensus processes.
A typical example for such an approach can be found in
the “Tendermint” protocol [163], where a node joins the
BFT committee of block validators by posting a bond-deposit
transaction. The validator no longer needs to prove its member-
ship by competing for the PoW-puzzle solution. Alternatively,
its voting power is equal to the amount of stake measured
in bonded tokens. Meanwhile, instead of randomly electing
the leader of block proposal in the committee (cf. [158]),
Tendermint adopts a round-robin scheme to designate the
leader in the committee. The similar design can be found
in a number of recent proposals such as Proof of Authority
(PoAu) [164] and Delegated Proof of Stake (DPoS) [165].
To generalize the mechanisms of BFT-committee selection
based on virtual mining, the authors in [166] further propose
a consensus protocol called “Algorand”. Like the other hybrid
protocols, Algorand relies on BFT algorithms for commit-
ting transactions. It assumes a verifiable random function
to generate a publicly verifiable BFT-committee of random
nodes, just as in [78]. The probability for a node to be
selected in the committee is in proportion to the ratio between
its own stake and the overall tokens in the network. For
leader election, Algorand allows multiple nodes to propose
new blocks. Subsequently, an order of the block proposals is
obtained through hashing the random function output with the
nodes’ identities specified by their stake. Only the proposal
with the highest priority will be propagated across the network.

Centralized
Database

Byzantine

Scale-out
Protocols

Agreemant

Protocols s

Basic Nakamoto
Protocols {e.g.,
Poi

Decentralization / Network Scale

Performance (Throughput & Latency)

Figure 20. Illustration of performance and scalability of different consensus
protocol families (see also the discussion in [18]).

In Table [Vl we provide a summary of the virtual-mining
mechanisms and the hybrid consensus protocols discussed in
this section.

VI. RELAXED AND PARALLEL CONSENSUS PROTOCOLS
FOR PERFORMANCE SCALABILITY

So far, we have surveyed the design methodologies of
various consensus protocols, especially for permissionless
blockchains. As our discussion indicates, the BFT-based con-
sensus mechanisms achieve high transaction throughput with
immediate finality at the cost of high message complexity.
Thus, they are restricted to small numbers of replicas and offer
limited network scalability in terms of the number of consen-
sus nodes. In contrast, the permissionless protocols surveyed
in Sections [Tl and [Vl provide good network scalability with
low message complexity. However, most of the Nakamoto-like
protocols (except the hybrid protocols guaranteeing immediate
finality [159], [160]) provide only probabilistic consensus
finality. As a result, consistency of replicas across the entire
network (cf. the consistency condition for the PoW-based
protocol in (@)) is maintained at the cost of low transaction
throughput and high latency. Figure 201 provides a descrip-
tive illustration of the scalability levels of different protocol
families with respect to both performance and network size.
For the protocols surveyed in our previous sections, network
scalability and transaction throughput are generally considered
as two performance indices that can only be attained at the cost
of each other. In this section, we aim to review the solutions
that scale out the throughput of a permissionless blockchain
as the size of the network increases.

A. Off-chain and Side-chain Techniques

For cryptocurrencies, one popular and straightforward ap-
proach to throughput enhancement is to adjust the parameters,
e.g., the block size and confirmation time in Nakamoto-like
protocols. A typical example of this approach can be found in
the Segregated Witness proposal (SegWit) [167] for Bitcoin
soft fork, which lifted the block-size limit from 1MB to 4MB.
However, the study in [95] points out that such a reparameter-
ization approach is constrained by the network’s bandwidth
(e.g., for block size) as well as the blockchain’s security
requirement (e.g., confirmation time). Thus, such an approach
does not really scale out the throughput as the network size
increases. With the emphasis on compatibility to the existing
consensus protocol or network realization, alternative ap-
proaches, e.g., the Lightning network [168], that aim to lower

Table V
SUMMARY OF VIRTUAL MINING AND HYBRID CONSENSUS PROTOCOLS FOR PERMISSIONLESS BLOCKCHAINS

. . . . Decoupling Block
Virtual Hybrid Simulating Leader Rule of Featured Consensus
Protocol Name Mining Consensus Election with Longest Chain Pro_posal from_ Properties
Transaction Commitment
Proof of stake [33], Yes No Verifiable random func- | Yes N/A No resource consumption
[77], 1148] tion, e.g., follow-the-coin
Proof of luck, Yes No Trusted random function Yes N/A No resource consumption.
elapsed-time and implemented by Intel- Special hardware support is
ownership [79], [149] SGX-protected enclave needed
Proof of burn [150] Partially No PoW puzzle competition Yes N/A Reduced resource consump-
tion
Proof of stake- | Partially No PoW puzzle competition Yes N/A Reduced resource consump-
velocity [151] tion
Snow White [152] Partially PoS-PoW Modified preimage | Yes N/A Robust consensus through re-
search with the hash configurable PoS committee
function
Proof of activity [78] Partially PoW-PoS PoW puzzle competition | Yes Transactions are commit- Higher cost for attackers to
for empty block proposal ted by a random group of | compromise the network con-
stakeholders sensus than PoW/PoS
Casper [154] No PoW-PoS PoW puzzle competition Yes N/A Validators use BFT protocols
to anchor checkpoint blocks
in the block tree
Bitcoin-NG [158] No Partially PoW puzzle competition Yes Proposals of microblocks | Leader election is only per-
do not need PoW solu- | formed at key blocks
tions
PeerCensus [159] No PoW-BFT PoW puzzle competition N/A Yes, Blocks are commit- | Strong consistency without
ted by BFT committees blockchain forking
Hybrid consensus pro- | No PoW-BFT PoW-puzzle competition | Yes Partially, only the trans- | Immediate finality
tocol [160] in the snailchain actions in txpools are
committed following BFT
protocols
Tendermint 11631, Yes PoS-BFT Verifiable random N/A Yes, following typical Deterministic consensus prop-
Proof of authority [164] function or deterministic BFT protocols erties
and delegated proof of mechanism
stake [165]
Algorand [166] Yes PoS-BFT Verifiable random func- | N/A Yes, following typical | Safety and liveness are
tion BFT protocols guaranteed under strong
synchrony

the frequency of global block validation/synchronization, are
proposed by the development communities, specifically for
value transfer networks.

The Lightning network [168] and its variations such as Blind
Off-chain Lightweight Transactions (Bolt) [169] and the TEE-
based Teechain [170] introduce the concept of (bidirectional)
micro-payment channels between two nodes via untrusted in-
termediary relays. Specifically, the payment channels are real-
ized as logical channels overlaying on the existing blockchains
(e.g., on Bitcoin [168] or on ZCash [169]) and therefore do
not modify the underlying consensus protocols. The value
transfer between the two end nodes on each channel is kept
“off-chain” as a local sequence of mutually-agreed balance-
state updates, also known as commitment transactions [168].
In other words, the sequence of transactions on an established
channel are not broadcast to the entire network and kept locally
between the two end nodes as well as the intermediaries when
needed. Then, transactions of value transfer over a channel
are not confirmed as normal transactions and cannot be spend
until the “closure” of the channel. When closing the channel,
only the most recent commitment transaction is broadcast and
needs to be mined by the blockchain network. By doing so,
the requirement of validating/synchronizing every transaction
across the network is relaxed and the number of transactions
to be mined is greatly reduced, hence making the underlying
blockchain network more throughput-scalable.

Due to the lack of trust, simply relaxing the consensus re-

quirement and keeping transactions in local payment channels
will incur the risk of double spending. To address this problem,
the technique of 2-of-2 muItisignatur is enforced in the
Lightning networks and a number of specifically designed
smart contracts (i.e., scripts in Bitcoin) are introduced. To
establish a channel, a funding transaction has to be created
jointly by the end parties and broadcast to the network in
order to lock their submitted tokens in escrow. An order of
broadcast is defined by creating for each party a different
version of every subsequent commitment transaction, i.e., in
the form of a half-signed transaction containing only the
signature of the counterparty, with the same balance outputs.
An accompanying revocable transactior?] is also created to
enable updating the balance changes. It also provide a means
of revoking transactions in case a violation occurs or a waiting
time limit is reached. In normal scenarios, only the latest
commitment transaction is broadcast to close the channel.
Otherwise, by broadcasting the right version of revocable
transactions, one end node is able to provide the publicly
verifiable proof of recognizing a malicious behavior by the
counterparty, and claim all of its deposit in the funding

21 An m-of-n “multisig” transaction requires the verification of a tuple of at
least m signatures for the same text from n corresponding public keys [171].

22 revocable transaction has two payout paths. If both parties of it agree,
its output can be spent immediately. Otherwise if after a certain waiting time
one or both parties do not broadcast, the fund can be redeemed. It is revoked
only when both parties agree to update with a superseding transaction.

transaction as a punishment.

Other than the off-chain schemes that aim to reduce the
amount of transactions over the network, an alternative de-
sign is to extend an existing blockchain-based value transfer
network with multiple “side-chains” [172]. A side-chain is
an independent blockchain network that validates a subset of
transactions and keeps track of the corresponding assets. Such
a design introduces parallelism into the existing network and
each side-chain is only responsible for validating a fraction of
the total amount of transactions in the network. Therefore, it
is able to increase the transaction throughput by adding more
side-chains. As in the off-chain techniques, side-chains do not
modify existing consensus protocols. Instead, the fundamental
goal is to enable bidirectional atomic value transfer between
side-chains. More specifically, any value transaction between
side-chains is either completely confirmed by both side-chains
or not at all. Meanwhile, the value carried by the transaction
can be imported from and returned to a side-chain with no risk
of double spending. To achieve such a goal (also known as
“two-way peg” in [172]), special proofs of value locking and
redeeming are needed whenever inter-chain transfer happens.
Especially, since the consensus nodes of the receiving side-
chain usually do not track the state changes of the sending
side-chain, providing a compact, non-interactive proof of
events occurring on side-chains becomes the utmost concern
of the network designers.

In [172], the Simplified Payment Verification (SPV) proof
is adopted from [I] based on the proof-of-inclusion path in
Merkle trees to provide compact proofs of value locking
for atomic transfer (cf. Figure [8). Further enhancement of
the proof is also proposed in [172] by introducing a trusted
cross-chain federation of mutually distrusting functionaries
(i.e., approving nodes). Out of the federation, the majority
vote in the form of an m-of-n multisignature is used to
replace the SPV proof for locking/redeeming a cross-chain
pay-to-contract transaction. Furthermore, an SPV proof is
accompanied by an array of block headers, whose parent is
the block containing the SPV-locked transaction on the sending
side-chain. This can be informally considered as a “proof of
PoW” shown to the receiving side-chain that the transaction
in concern is sufficiently deep in the sending side-chain and
thus safely locked (see also our discussion about (@)). In [173],
a formal primitive called Non-Interactive-Proofs-of-Proof-of-
Work (NIPoPoW) is proposed to fill the gaps of compactness
and non-interactiveness in the proposal of [172] for PoW-
based side-chain networks. To avoid tracking/validating every
block on the sending side-chain, the study in [173] proposes
to replace the linear list-based blockchains with a skiplist-like
data structure called interlink (see Figure [21] and also [174]).
As with SPV, a valid NIPoPoW of transaction confirmation
also contains an array of blocks (i.e., suffix proof) preceded
by the block in concern as a stability proof of that block in
the chain. Instead of validating the entire source side-chain,
NIPoPoW only has to include 2m blocks in expectation from
each level of the hierarchical blockchain in the proof. Here,
m IS a system-determined security parameter to ensure that
for every level y, the proof only needs to include a number of
blocks from the tail of level . to span the last m-size suffix of

+— Genasie pointer

+— Regular chain painter

+— Depth pointer

Figure 21. A graphical example of the hierarchical blockchain with levels
0, 1 and 2. A block with header bh is of level p if bh < D(h)/2H (see also
(D). Besides the regular hash pointer to the previous block, a block of level p
also maintains a list of hash pointers (interlinks) to the most recent preceding
blocks in every level W’ such that i’ > p. The genesis block is defined to be
of infinite level and hence every other block has to include a pointer to it.

blocks in the higher level .+ 1. Compared with a secured SPV
proof for inter-chain transaction, with NIPoPoW the number of
source-chain blocks tracked by the receiving side-chain is only
a polylogarithmic function of the source side-chain’s length.

B. Sharding for Scale-out Throughput

Inspired by the infrastructures of distributed database and
cloud, the concept of “sharding” [95] is also applied to the
blockchain networks. As in side-chain networks, the approach
of sharding partitions the global blockchain state into parallel
subsets (i.e., shards), and each shard is maintained by a sub-
group (i.e., committee) of nodes instead of the entire net-
work. To improve the transaction throughput as well as retain
the open-membership nature of permissionless blockchains,
multiple BFT committees can be constructed following a
similar procedure of the hybrid protocols (cf. Section -C).
As a result, the sharding protocols generally face the same
challenges as in side-chain networks and hybrid consensus
protocols, i.e., in providing secured shard formation to guar-
antee permissionless decentralization and in providing cross-
shard synchronization to guarantee atomic transactions.

The study in [175] adopts the UTXO structure from Bit-
coin and proposes the “spontaneous sharding” mechanism
specifically for value transfer networks. Spontaneous sharding
introduces a level of individual (spontaneous) chains for each
node to maintain its own transactions of interest in a first-
in-first-out fashion. It keeps a globally shared main chain,
which only records the signed abstracts (i.e., header) of the
blocks on each individual chain using a BFT-based consensus
protocol. In this sense, spontaneous sharding is considered
to be a transitional design from micro-payment channels to
sharding, since it admits only the transaction-sharding process
but not the validator-sharding process. The validity of the
proposed mechanism is built upon the assumption that all
nodes in the network are rational. Namely, a node is interested
in inspecting a transaction only if it needs that transaction to
validate a subsequent transaction output that it receives. Only
the rational owner of an unspent transaction is responsible for
providing the proof to the validators (i.e., receivers). However,
due to the existence of sharded individual chain, the protocol
in [175] faces an unresolved problem of lacking compact proof
(cf. [173]), since for every proof, the validators have to trace
back to the genesis block of each related individual chain.

O value transfer O registration
O domain name . intellectual property

E] checkpoint

Figure 22. Service oriented sharding with multi-chain structure (adapted
from [176]). PoW solution is required for generating a checkpoint. Users
are able to propose new services by posting transactions to register the
corresponding channels in a checkpoint block (see the sub-blockchain for
the “intellectual property” service).

In [176], a different approach of transaction sharding is
proposed under the name of “Aspen”. Instead of maintaining
an individual chain for each node, Aspens organizes trans-
actions into sub-blockchains (see Figure 22) based on the
type of services related to each transaction. It introduces
periodic checkpoint blocks for synchronizing sub-blockchains
(cf. the anchor points in Casper [154]). Aspen is instantiated
on Bitcoin-NG [158] and only requires the checkpoint blocks
to be generated upon PoW-puzzle solution to determine the
proposal leaders of micro-blocks in each service channel (i.e.,
sub-blockchain). To avoid designing complex proofs of cross-
chain transactions (cf. [172], [175]), Aspen does not allow
two-way transfer between channels and requires that each fund
is only spendable in a specific channel.

In [177], a different sharding protocol named “Elastico”
is proposed with the emphasis on the process of valida-
tor sharding through dynamically forming multiple BFT-
committees. Elastico organizes the transaction approving pro-
cess by epochs, and in each epoch a number of committees
are formed in parallel based on the PoW-puzzle solution in
a similar way to the proof of membership in [162]. The
study in [177] proposes a mechanism of generating distributive
epoch randomness by using one network-level BFT committee,
which determines a subset of hash values randomly provided
by its members. The committee can run any non-leader inter-
active consistency protocol, e.g., [178] to reach an agreement
on such a single set to generate the public random number.
In an epoch, the candidates of the committees have to solve
the PoW puzzle based on the public random number. Elastico
also uses the least-significant bits of the PoW solution (i.e.,
the hash value) to group the candidate nodes into different
committees. Thus, this procedure guarantees that the commit-
tees are randomly formed and unpredictable. Meanwhile, to
avoid designing complex proofs of cross-shard transactions
(cf. [175])), Elastico relies on the network-level committee to
merge the locally agreed values in each committee into a single
chain. The network-level committee first checks whether the
values received from each local committee are signed by their
majority members. If so, it merges the received values into
an ordered union and runs a similar BFT protocol to approve
the final result with signatures by the committee majority. By
limiting the burden of quadratic message complexity within
shard committees of small size, Elastico is able to achieve
roughly O(n) message complexity and provide almost linear
throughput scalability in terms of the hash power in the

network. Also, compared with the aforementioned throughput-
scalable protocols, e.g., [171], [172], [175], Elastico does not
limit itself to value transfer networks and can be applied to
generic data services with non-spendable transactions.

By enabling parallelization of both data storage and network
consensus, protocols aiming at “full sharding” are proposed
in [[179], [180]. In [179], a protocol named “OmniLedger”
is designed to provide “statistically representative” shards
for permissionless transaction processing. As in [177], Om-
niLedger is built upon two levels of epoch-based Byzantine
agreement processes, with the network level being responsible
for epoch randomness generation and the shard level for
intra-committee consensus. In the network level, a global
identity blockchain is adopted and can only be extended by the
network-level leaders. Any node that wants to join a committee
has to register to this global blockchain through a Sybil-
proof identity establishment mechanism. Especially, such a
mechanism is not limited to PoW and can be replaced by other
means, e.g., PoS. At the beginning of an epoch, all the nodes
with established identities are required to run an interactive
consistency protocol by sharing with each other a “ticket”
based on a gossip protocol. The ticket is generated as the hash
value of the node’s address and the header of the identity
blockchain. The node that generates the smallest ticket will
be elected as the network-level leader. The leader is expected
to run a verifiable random function (e.g., RandHound [181])
and generate a global random string with a valid proof. Upon
reception of this random string, other registered nodes are
able to compute a permutation based on this string as well
as their own identity, and then finish the assignment of shard
committees by subdividing their results into equally-sized
buckets. In addition, OmniLedger proposes to swap gradually
in-and-out committee members per epoch. This design not
only allows bootstrapping new nodes joining the network, but
also avoids excessive message overhead and latency due to
complete shard reconstruction (cf. Elastico). In the shard level,
a committee can employ any leader-based BFT protocol (e.g.,
ByzCoin [162]) to provide intra-shard consensus.

In [180], another epoch-based, two-level-BFT protocol for
full sharding is proposed under the name “RapidChain”. In
the network level, RapidChain requires a reference BFT-
committee to run a distributed randomness generation protocol
similar to [177] and generate a public random string to
initialize the formation of shard-level committees. As in [[179],
the shard-level committee reconfiguration in RapidChain only
reorganizes a subset of committee members at each epoch
to ensure operability during committee transition. At the
bootstrapping stage in a network of n nodes, the established
identity of a node is mapped to a random position in the range
[0, 1) by using the hash function. Then, with some constant k
(i.e., committee size), the range is partitioned into n/k regions,
and the shard-level committees are consequently formed based
on this region partition. At the reconfiguration stage, Rapid-
Chain defines the set of the first half shard-level committees
with more active members as the “active committee set”.
The network-level committee is responsible for assigning new
nodes into the active shard-level committees uniformly at
random. After that, it shuffles a constant number of members

from every existing committee and randomly reassign them to
other committees. On the shard level, RapidChain requires the
members of each BFT-committee to run also the distributed
randomness generation protocol and generate a local random
string. Then, the committee members compete for the leader
election through solving the standard PoW puzzle based on
the local random string. The members elect a node with the
smallest PoW solution by gossiping their votes with signatures
to each other. Then, the BFT protocol will be led by that node
to reach the intra-shard consensus for transaction commitment.

As in [[175], [178], full sharding also partitions the storage of
the blockchain state into multiple shards (e.g., local ledgers).
Then, the full sharding protocols [179], [180] are characterized
by their ways of handling cross-shard transactions to guarantee
atomic transaction commitment. In [179], OmniLedger uses
UTXO to represent the client’s balance state. Therefore, a
cross-shard transaction is always associated with at least an
input shard as well as an output shard (see Figure[23(@)). Om-
niLedger adopts a lock-unlock-abort mechanism by requiring
the input shard of a cross-shard transaction to “lock” the input
first. Namely, the leader of the input shard has to provide a
proof-of-acceptance in the form of Merkel proof before the
corresponding transaction can be committed. If the transaction
is found to be invalid, the input shard creates a proof-of-
rejection in a similar form by using a designated bit to indicate
an acceptance or rejection. Even with a proof-of-acceptance,
the receiving client still cannot freely spend the UTXO. The
receiver is required to send an unlock-to-commit transaction
with that proof to the output-shard committee. Until the output
shard validates this special transaction and includes it into the
new block, the receiver is able to spend the UTXO of the
original transaction.

In [180], RapidChain proposes a different approach of
committing cross-shard transaction, which does not require
a receiver to collect proofs from the input shards. Instead,
for any input value of a transaction from a different shard,
the output-shard leader is required to create a single-in-single-
out transaction where the output is equal to the input of the
original transaction. By doing so, the output committee tries
to create a local record of the input and holds the input value
in escrow. To confirm the escrow, the output-shard leader
is responsible for sending this new transaction back to the
input-shard committee for approval. After the input committee
adds this transaction into its ledger, the output-shard leader
will create a final transaction, with the UTXO of the escrow
transaction being the input and the same outputs of the original
transaction. After the output-shard committee adds the final
transaction to its ledger, the transfer process is finished and
the corresponding UTXO becomes spendable by the receivers.
An illustrative comparison between the protocols of cross-
shard transactions in OmniLedger and RapidChain is given
by Figure 23

C. Nonlinear Block Organization

Another approach aimed at improving the network through-
put focuses on the design of transaction data organization. As
we briefly introduce in Section [I=B} instead of organizing

PR \ -— (2a) Lock - (3a) Commit E}
() Inputshard cent O dient O dient
== ‘commit
accept2 output
—~ —~ —~ -~
Output shard AN O - W Y
(shara1 | [shar2 | (sharg1 | [shari2 |
N/ __/ N\ __/
-~
mpull// P P
| input2 (2b) Lock e (3b) About
P N - B B
laim dlient
puts
~

N

(1) Initialization

Vs N \ |
(sharir | [shar2 | !
N/ N__’ }
|
|
|

-

— iy
N 4 N O
(shardr) (shami2) (shard1 | [shar2 |
o o

—~ -—) (2) Lockin escrow - (3a) Commit
IO [[
() Inputshard O dient O dient
N/
— — comit
N O
Output shard [sharax) { shars2) AT T
N__’ __~
- ~ [\Shanﬂ/] [\sham/]
O i —_— —
< accept’
\\ \

P —mm—m e — — — P —mmm— e —— —
LN I — - " ‘hq (30 About Bk }
AT T ‘ [|

(o | dient | dient -
ard1 | [shard2 | | N |
2 b — ;! rectaim |

~= ~= I~ y I inputs |

\ N\ | |
I shard | shari2) =N =N |
IN. 7 N_ 4 P \ \ |
(1) Movethe inputs to the output shard |~ ~= o | [shara1) (sham2) |
| | |

-

(b)
Figure 23. Atomic cross-shard transaction protocols in (a) OmniLedger [179]
and (b) RapidChain [180]. In the two protocols, different parties are respon-
sible for collecting input-shard approvals for committing transactions.

block in a linear list, the approaches of nonlinear block
organization are able to (partially) address the scalability
problem by changing the mechanism of transaction validation
in the consensus layer. The earliest scheme of nonlinear block
organization can be found in [25] as the protocol of Greedy
Heaviest-Observed Sub-Tree (GHOST). In a GHOST-based
network, nodes store all the locally observed valid blocks
and consequently maintain a tree of their respective forks.
As an alternative to the longest-chain rule, GHOST extends
the canonical chain of PoW-generated blocks by the block
with the heaviest subtree, i.e., the subtree with the largest
number of tree-nodes (see Figure 24). In [38], a unified
security description of GHOST and the Nakamoto protocol is
established by slightly modifying the K-consistency property
in [94] (see also Section [I-B) into a new property of K-
dominance, which measures the discrepancy in the weights
between sibling subtrees. As pointed out in [25], the rate of
main-chain growth of GHOST is lower than that of the longest-
chain rule when the block generation rate and the network
delay are the same. However, since GHOST relaxes the block-
generation constraint for the same level of security requirement
against 51% attacks, it is able to shorten safely the waiting
time for block confirmation and thus has a limited ability of
improving the network throughput.

A further step toward nonlinear block organization is pro-
posed in [182], where blocks are ordered in a DAG and each
block is allowed to have multiple predecessors (cf. single
parent block in GHOST [25]). Namely, the header of each
block may contain more than one pointer to the precedent
blocks to indicate the pairwise order. The DAG-based protocol
in [182] also selects a main chain (cf. GHOST) of linear order
from the DAG. To form such a linear order on the blocks at the
current view, a node runs for each block a postorder traversal

D +— 3F =+— 4C

3E

/ 1B L 30 +— 4B
0 3C
Genesis
28 +—— 38

1A 4 A 4 38 4 JA +— 54

Time

Figure 24. A tree of blocks. Instead of choosing the longest chain
1A to 5A), Block 1B with a subtree weight 11 is selected into the mai
Consequently, Blocks 2C (with a subtree weight 5) and 3D (with a
weight 2) are selected into the main chain of the current view.
algorithm on the DAG and checks if the transactions
current block are consistent with the visited one. Con
with the longest-chain rule or GHOST, the DAG-based |
chain expansion allows the non-conflicting, off-chain blc
be selectively included into the ledger view. For example
the perspective of a main-chain block, its off-chain desc
blocks can still be included into the ledger as long as th
not far away from the main chain as both predecesso
descendants. Then, by including the discarded (i.e., off-
blocks, the proposed protocol possesses a limited abi
increasing the network throughput.

To further improve the network throughput, the pr
proposed in [182] is later extended to the protocol “
TRE” in [26]. SPECTRE relaxes the requirement on nuuc
synchronization, and allows blocks to concurrently grow on
the ledger without specifying a main branch. To define the rule
of ledger extension, SPECTRE introduces a virtual pairwise
voting mechanism to determine the order of any pairwise
blocks in the DAG. In brief, each block in the DAG contributes
to the vote on the relative order of not only its preceding blocks
but also its descendant blocks according to the topology of the
DAG. Compared with the main chain-based rules, SPECTRE
is shown to be robust to block-withholding attacks (cf. [143]).
The reason is that with vote-based pairwise ordering, secret
chains published by the attackers cannot win the votes by
existing blocks from the honest nodes due to the lack of
connections in the DAG (see Figure 25)). Without undermining
the network security, i.e., increasing the transaction reversal
probability, SPECTRE admits faster commitment time as the
block creation process is accelerated. By (), the more nodes
in the network, the higher the expected block generation rate is
given a fixed PoW difficulty. As indicated by [26], for a target
transaction-reversal probability, a known propagation delay
and a fixed PoW-difficulty level, SPECTRE is able to increase
the transaction throughput as the network size increases.

Based on the aforementioned protocols, a number of DAG-
based schemes have been proposed with a variety of emphasis
on different performance indeces. For example, Byteball [183]
adopts the concept of main chain/tree (see also [25], [38],
[182]) but uses authenticated witnessing nodes to determine
the partial order of blocks at each user’s view. Another
DAG-based protocol, i.e., Conflux [184] modifies GHOST
by adding in each new block the reference pointers to all
existing blocks without descendants at the current DAG view.

Attacker
broadcasts the
withheld blocks

Attacker's
blocks

Time

Woter in the descendant sets of both

Woter in the descendant set of
one block of the considered pair blocks of the pair in concern

D Voter anly in the ancestor set{s) of

the considered pair of blocks
Figure 25. An example of the virtual voting procedure on the order of blocks
X and Y in a DAG with block withholding attacks. Blocks (voters) in the
descendant set of X will vote X <Y (i.e.,, X preceding Y) since they only
see X. Blocks 0-4 will vote X < Y since they see more X < Y votes in
their sets of descendant block. Blocks 8-10 which have both X and Y as the

ancestors run an recursive query to their predecessor sets and use the majority
voting results as their own votes.

Compared with [25], [182], Conflux is claimed to provide
100% utilization of the off-chain blocks and thus is able
to improve the network scalability. Furthermore, a similar
protocol to SPECTRE is proposed in [24], [185] as IoTA
Tangle. The major difference of I0TA Tangle lies in that it
discards the data structure of block as a package of transac-
tions. Instead, it requires nodes to publish directly transactions
onto the transaction DAG. A node is enforced by the protocol
to approve/reference more than two transactions by linking
their hash values in the header of its new transaction to
expand the DAG. By doing so, the node expects to accumulate
sufficient weight (cf. votes on the partial orders in SPECTRE)
for this transaction from the future transactiond® by other
nodes to finally confirm it. So far, complete theoretical proof
of the liveness property of 10TA Tangle is still an open
issue [24], [185]. However, the study in [185] implies that, if
self-interested nodes have the same capability of information
acquisition and transaction generation as the other nodes, they
will possibly reach an “almost symmetric” Nash equilibrium.
Namely, they will be forced to cooperate with the network by
choosing the default parent-selection strategy followed by the
honest nodes.

VII. EMERGING APPLICATIONS AND RESEARCH ISSUES
OF BLOCKCHAINS WITH PuBLIC CONSENSUS

In the previous sections, we have provided an in-depth
survey on three main categories of permissionless consensus
protocols for blockchain networks, namely, the Nakamoto-like
protocol based on PoX puzzles, the virtual mining and hybrid
protocols and the emerging open-access protocols emphasizing
the scale-out performance. On top of the consensus provided
by these protocols, the blockchain is able to fully exert its
functionalities such as smart contracts for a wide range of
applications. In general, we can divide the studies on the
emerging blockchain-based applications into two categories:
the service provision atop the blockchain consensus layer and
the consensus provision to existing blockchain frameworks.

23 As in SPECTRE, an I0TA transaction (indirectly) approves/references an
earlier transaction if it can reach that transaction via directed links.

The former category of studies usually exploit special char-
acteristics of blockchain networks, e.g., self-organization and
data security, to guarantee target features in their respective
services. In contrast, the latter emphasizes the P2P or decen-
tralized characteristics of blockchain networks. Hence, most
of them focus on rational nodes’ strategies or the overlaid
incentive mechanism design of resources allocation in the con-
sensus process. In this section, we provide an extensive review
on the properties of blockchain networks and the applications
exerting mutual influence on each other. Meanwhile, a series
of open research issues are also identified.

A. General-Purpose Data Storage

The Cambridge’s 2017 annual blockchain benchmarking
study identified that the majority of blockchains use cases are
still dominated by the capital market sectors [[186]. Neverthe-
less, significant effort has recently been put into the study of
using blockchains for storage of generic data, which aims at
preserving the properties of data immutability and trackabil-
ity in a decentralized environment. A naive approach is to
“piggy-back” arbitrary data (e.g., non-transferable metadata)
onto transactions in established public blockchains [187]. For
example, in the Bitcoin network, nodes can use the special
script instruction OP_RETURN to indicate that the transaction
output is unspendable and expected to be removed from the
UTXO. Then, the transaction is allowed to carry a limited
length of arbitrary data onto the chain. Typical examples
of directly storing metadata onto blockchains can be found
in asset ownership registration, e.g., Namecoir?4 [188] as a
blockchain-based namespace system. Note that the direct on-
chain storage is limited by the message length and naturally
requires full replication of each data object over the network.
Then, this solution needs to be improved to lift the data-
length constraint and reduce the synchronization cost. In [189],
where a naming system is constructed on top of Namecoin,
the data storage is decoupled from the block serialization
(i.e., name registration) process. In order to achieve this, the
authors of [189] adopt a “virtualchain” to process registra-
tion/modification operations of names (e.g., domain names or
IP addresses). Only the minimal metadata, i.e., the hashes
of the name-payload pairs and state transitions are stored
on the blockchain. The third party storage is connected by
virtualchain to store the payload of arbitrary length with digital
signatures from the data owner.

The same idea of decoupling the storage layer from the
main blockchain can also be found in works such as [190]-
[192]. The studies in [190], [191] focus on data storage and
sharing for large-scale 10Ts. Therein, two similar blockchain
frameworks are proposed by introducing the off-chain storage.
In brief, the data generated by IoT devices is stored in DHTSs,
and only the pointer to the DHT storage address needs to
be published onto the blockchain. The DHT-based storage is
provided by an off-chain layer of decentralized DHT nodes.
Upon seeing that transactions of storing/accessing requests are
confirmed by the blockchain, the DHT nodes are responsi-
ble for accordingly storing or sending the data from/to the

24https://namecoin.org|

Service
Providers

Data/Computation/
Offloading /

Registration and
Service Negotiation

AN

(Mobile)
Clients

Service Delivery

Service
Hosting
Peers

— Operations in the form of smart contract

— ¥ Interactions between entities(including data flow)

Figure 26. A generic framework of using blockchains as system integrators
for self-organization. The operation flow is realized as a sequence of smart
contracts: (1) service registration/requests by the clients, (2) access/certificate
granting by the providers, (3) requesting service hosting (e.g., auction for
computation/storage offloading) by the providers, (4) peers answering (e.g.,
bidding for) the hosting requests, (5) delivery negotiation between hosting
peers and clients and (6) service completion with proofs of delivery.

legitimate 10T nodes. In [192], further discussion is provided
regarding the issue of how to control the data replication factor
in the network. Instead of using an off-chain storage layer, the
design in [192] compromises the property of decentralization
in exchange for a stronger control of replication synchroniza-
tion. In the proposed framework of blockchain-like database,
i.e., BigchainDB, P2P communication protocols are replaced
by the built-in broadcasting protocol, and a committee (i.e.,
federation) of voting nodes are designated for block validation
and ordering. Such a permissioned design shares a certain level
of similarity with the framework of HyperLedger [39]. By
doing so, it is possible for the federation nodes to control
where to store a submitted transaction and flexibly determine
the replication factor (i.e., the number of shards/replicas)
per table in the underlying distributed database. Such design
avoids the issue of full data replication over the network
and makes it possible for constructing a large-scale, high-
throughput database directly on a blockchain network.

B. Access Control and Self-Organization

The most popular design approach sees blockchains as
enabling technologies for implementing accountable and se-
cure services in a decentralized fashion. In other words,
blockchains are utilized as a decentralized intermediary for
channeling/accounting services upon demands as well as for
guaranteeing data security and confidentiality. In Figure 26}
we describe a generic framework of decentralized service
provision built upon blockchains. The most prominent feature
of this framework lies in that the interactions between different
entities in the system are all tunneled autonomously in the
form of smart contracts. Such a framework has been adopted
by a wide range of service provision systems including P2P
file sharing based on InterPlanetary File Systew@ (IPFS) [136],
decentralized content delivery [[193]], [194], access control in
telecommunication networks [37], [195] and various missions
for access and permission management, e.g., in 10Ts [196]
and clouds [197]. For different task requirements, this appli-
cation framework can be expanded by including additional
entities, e.g., third-party auditors [198], as well as new opera-
tions, e.g., Hierarchical ldentity Based Encryption (HIBE, see

2ZShttps://github.com/ipfs/ipfs|

https://namecoin.org
https://github.com/ipfs/ipfs

also [199]) [200]. To provide a better idea on how this emerg-
ing framework can be shaped in recent studies, we categorize
the blockchain-based proposals for self-organization according
to the areas or context that they are applied in.

1) Access Control in Wireless Networks: In [195], the
authors propose to use blockchains for providing Identity and
Credibility Service (ICS) in cloud-centric Cognitive Radio
(CR) networks. The CR users utilize their pseudonymous
identities on the blockchain to negotiate with the network
operator, i.e., the spectrum owner, for granting opportunistic
access and settling payment. According to [195], the ICS can
be provided by either the blockchain itself or a third-party
entity registered on-chain, and the network access negotiation
is automated by smart contracts. Meanwhile, it is pointed
out in [195] that the blockchain’s consensus mechanism can
be employed for coordinating spectrum sensing among the
distributed CR users. However, it is not clear how the CR-user
consensus can be achieved on top of the ledger consensus as
with the classical methods [201] in CR networks.

In another study [202], the same authors propose to use
a permissioned blockchain to handle the network access ex-
change, i.e., the spectrum handoffs. The CR users and their
base station controller submit the information of spectrum and
network utilization as metadata onto the blockchain. Then,
the CR network responds by updating the smart contracts
and publishing the new access prices and number of network
access units allocated to each CR onto the blockchain for
execution. A similar design with more technical details can be
found in [203]. Therein, a blockchain based on the Nakamoto
protocol with its embedded tokens and smart contract layer
is adopted as a spectrum auction platform. More specifically,
multiple primary users as providers sell their unused bands
at a certain price with smart contracts and allocate them to
responding CR users when the contracts are executed upon cer-
tain conditions. It is claimed in [203] that the blockchain-based
spectrum allocation outperforms the conventional medium-
access protocols such as Aloha. However, technical details
are missing about how the issue of high transaction latency
is addressed to satisfy the CR network’s constraint due to the
timescale of small-scale fading in wireless channels.

Blockchains are also introduced into vehicular ad-hoc net-
works (VANETS) to address the issues of network volatility
due to high mobility. For Vehicles-to-Infrastructure (V2I)
communication, the study in [204] uses the Nakamoto-based
blockchain as a secure key-delivery channel to handle the
access of a moving vehicle to groups of Road Side Units
(RSUs) in different regions. By encapsulating the key infor-
mation in a blockchain transaction, the security manager of
one region is responsible for issuing the transactions to that
of the new region as well as mining the new blocks onto the
blockchain. Comparatively, the study in [205] focuses more
on the ad-hoc nature of VANETSs and employs the blockchain
to collect the trustworthiness rating on messages sent to each
other by the peer vehicles. The RSUs do not only work as the
consensus nodes in the blockchain network but also work as
the decentralized storage hosting peers of the trust rating data
(cf. Figure[28). It is worth noting that in [205] the transactions
carrying vehicle reports are essentially unspendable. The RSUs

employ weighted average to the rating scores to estimate the
quality of the received reports. Then, they use the estimation
results as the difficulty parameter for PoW-based mining in
a similar manner of the Peercoin-like protocols (see also
Section V-A)).

In the existing studies on blockchains-based network access
control, the study in [206] is among the few to explicitly
address the issue of high signaling latency over the blockchain
due to the adoption of Nakamoto protocols. In [206], the pro-
cess of authentication transfer for User Equipments (UESs) in a
5G ultra dense network is handled by a blockchain in a similar
way as in [202]. Instead of delegating the transaction/contract
execution process to a dedicated overlay blockchain, it is
proposed in [206] that the Access Points (APs) use the PBFT
protocol within a dynamic consensus committee to handle the
requests of authentication by UEs in the form of transactions
or smart contracts. In order to implement the PBFT protocol,
a local server center is introduced as the primary peer (i.e.,
leader) of the committee. Nevertheless, we note that any non-
leader consistency protocol can be adopted in this framework
to preserve the property of complete decentralization (see also
Section[VI-B). According to [206], the PBFT-based blockchain
is able to keep the transaction delay around 100ms. Compared
with the standard Nakamoto protocols, it is more practi-
cal to deploy network control mechanisms over PBFT-based
blockchains for delay-critical tasks such as access hand-over.
However, how to find a balance between the required levels
of latency and decentralization (e.g., with hybrid consensus
protocols) still remains an open question.

2) Self-Organization and Security Enhancement under Var-
ious Network Architectures: Apart from network access con-
trol, blockchains have also been applied to various scenarios
as a decentralized platform for self-organization. As briefly
shown in Section VII-B1] blockchains can also be used
for security enhancement with its embedded cryptographic
functionalities. Typical examples for the former applications
can be found in proactive caching and Content Delivery
Networks (CDNSs) [193], [194], [207]. In [[194], a decentralized
CDN platform is established with the help of blockchains
among the three parties of content providers, content serving
peers and clients (cf. Figure 28). With smart contracts, the
content providers offload the tasks of content delivery to
multiple content serving peers. It is suggested in [[194] that the
content providers use smart contract prices to control the file
placement on multiple serving peers according to the demand
frequency and achievable QoS at the peers. Furthermore, the
work in [193] mathematically formulates the pricing-response
interaction between the providers and the serving peers as a
potential game [141] Chapter 3.4]. Then, it designs a series
of smart contracts for automatically matching the peers to the
providers under the same CDN framework. A modified PoS
protocol is subsequently proposed to incentivize the serving
peers to work as the consensus nodes of the blockchain without
consuming significant computational power.

In [207], the authors design a blockchain-based brokering
platform for video delivery in a user-centric CDN ecosys-
tem. The proposed platform is built upon three indepen-
dent blockchains for content brokering, delivery monitoring

and delivery provisioning, respectively. The content broking
blockchain handles the content requests and matches the
clients’ requests to the providers’ offers in a series of smart
contracts among the three parties. The delivery monitoring
blockchain records proofs of delivery and finalizes the pay-
ment and refund between the providers and the clients. The
delivery provisioning blockchain provides smart contacts for
content dissemination between the providers and the serving
peers. In such a framework, the decentralized entities in the
CDN treat the blockchain as a ready-to-use service offered
by a third party. Therefore, any form of blockchains (e.g., the
permissioned HyperLedger) can be employed as long as the
requirement of transaction throughput and latency is met.

In various applications of edge/fog/cloud computing, more
and more attempts are also found to use blockchains for
providing services such as trusted auditing and secured data
delivery in addition to autonomous brokering. In [198], the
blockchain is used as a tamper-proof provenance database on
the cloud server side to record the history of the creation and
operations performed on a cloud data object. By adopting a
public blockchain, any node in the blockchain network is able
to perform data auditing. By using pseudonymous identities
on blockchains, the proposed auditing mechanism reduces
the probability that auditors can correlate the real identity
of a specific user with the operations. In other works such
as [196], [208], the blockchain is introduced into the three-
layer paradigm of edge-fog-cloud computing. In [196], the
blockchain is used as a connector to provide encrypted channel
by using the public key functionality for data delivery from
the edge devices to the fog and cloud. More specifically, the
study in [196] considers a smart video surveillance network,
where the preprocessing tasks such as object tracking are
handled at the edge devices, and the more sophisticated tasks
of data aggregation and decision making are performed in the
fog/cloud based on the data filtered at the edge. To prevent ma-
licious modification on video frames in the untrusted fog layer,
the cloud layer deploys smart contracts on the blockchain
to provide an indexing service and generate unique index
for every video frame with transactions published onto the
blockchain. The work in [208] adopts the same data-processing
flow from the edge to the cloud as in [196]. In contrast
to [196], the blockchain is used to provide automatic matching
between the data-service requests and the providers in the
cloud’s service provider pool. In this sense, the blockchain is
again used to provide the broking service as in [193], [194].

3) Trusted Broking Services in Cyber-Physical Systems: In
the context of crowdsourcing (e.g., crowdsourcing of mobile
sensors, a.k.a., crowdsensing), permissionless blockchains are
also found to be especially appropriate for providing non-
manipulable brokering services between clients (i.e., task re-
questers) and service providers (i.e., crowdsourcing workers).
In [209], a purely decentralized crowdsourcing system for
general purpose is proposed following the paradigm described
by Figure 261 In the proposed framework, the procedures
of identity registration, task/receiving, reputation rating and
reward assignment are all automated in the form of smart con-
tracts. Following the approaches described in Section VTI-Al
the blockchain network delegates the data storage to an inde-

pendent storage layer and only keeps the metadata on-chain.
Similar blockchain-based frameworks are also adopted for
crowdsensing in recent studies such as [210], [211]}, where ad-
ditional functionalities are adopted in the blockchain networks
to address different performance requirement such as through-
put scalability [210] and anonymity enhancement [211].

In the context of loTs, blockchain-based infrastructure is
also envisioned as a promising alternative of the centralized
one for data management, trading automation and privacy
protection. In [212], the authors introduce the micro-payment
channels (see also Section [VI-A) based on a Bitcoin-like
blockchain to conduct energy trading in a decentralized smart
grid without relying on trusted third parties. In [213], a P2P
surplus-energy trading mesh of the plug-in hybrid electric
vehicles is built on a Nakamoto protocol-based blockchain.
In the proposed framework, a number of authorized nodes are
responsible for processing and recording the transactions and
an iterative double auction mechanism is deployed based on
the transactions published on the blockchain. This framework
of blockchains as a P2P trading mediator is also adopted
in [214], [215], where the PBFT protocol is used to replace the
Nakamoto protocol and form a consortium blockchain. Fur-
thermore, the mathematical tool of contract theory (see [216]
for more details) is adopted to determine the optimal prices
and requested utility in the relevant smart contracts.

C. Consensus Provision and Computation Offloading under
Nakamoto Protocols

In contrast to the studies that we review in Sections [VII-Al
and [VII-B| another line of works focus on (decentralized)
resource allocation for consensus provision in the Nakamoto-
based blockchain networks. In other words, these studies view
the consensus in blockchain networks of a given protocol as
the goal to be achieved instead of a ready-to-use service.
Recall that the Nakamoto protocols require consumption of
certain resources in the PoW-like puzzle solution competition
for new block proposing (see also Section [II). With this
property in mind, a plethora of works, e.g., [131], [132],
[217]-[220], are devoted to the studies of resource allocation
in the block mining process in exchange for monetary rewards
(i.e., mining reward in tokens) offered by the blockchain.
In [131], [218], [219], a scenario of deploying blockchains on
the mobile edge devices is considered. Due to the intensive
resource consumption for PoW solution, it is difficult to
directly migrate blockchain networks to the mobile environ-
ment [218]. Therefore, the computation offloading schemes are
proposed in these studies by either formulating the problems
in a nonlinear/binary programming framework [219] or as a
hierarchical (i.e., Stackelberg) game [131], [218].

We use [131] as an example to explain how the PoW-
work offloading process can be formulated as a conven-
tional optimization or game theoretic problem. To offload
the tasks of PoW-solution searching from mobile devices to
the edge/fog/cloud, a series of factors including transaction
transmission delay and blockchain-forking probability need
to be considered when constructing the utility model of the
mobile node at the edge. Considering that the computation

providers at the edge/fog are able to control the price of
the offered computational resource, the offloading process is
modeled in [131] as a two-stage Stackelberg game. In brief, the
cloud/fog providers act as the leader to set the resource price,
and the edge devices acts as the follower to determine the share
of resource to purchase for offloading the mining tasks. Ac-
cording to the various assumptions about the offloading scenar-
ios (e.g., multi-leader vs. single leaders), different approaches
such as nonlinear optimization formulation or best response-
based equilibrium searching are applied to each layer’s sub-
problem in the manner of backward induction [141, Chapter
3.4.2]. Extending from the basic scenarios in [131], [219],
various tools of mechanism design, e.g., auctions [132], [217],
can be further applied into the similar offloading problems for
resource allocation in the blockchain consensus process.

D. Some Open Issues and Potential Directions

In the existing literature on blockchains, a number of open
issues have been discussed regarding the non-consensus layers
in blockchains, e.g., the issues of security and privacy [20]
and quantitative analysis of smart contract performance [221].
In the following, we discuss issues and emerging research
directions that have not been covered in the surveyed works.

1) Cost of Decentralization: The properties of permission-
less blockchains such as trustlessness and self-organization
have been widely recognized as the advantage over the con-
ventional ledger/brokering systems. However, decentralization
with blockchain networks is not “at no cost”. As we have
partly discussed in Section [Vl even the scalable consensus
protocols do not completely solve the problem of balancing
between the requirement of security and resource efficiency.
For instance, hwo to adaptively control the replication factor
in shards still remains an open issue.

Furthermore, consider that historical data such as spent
transactions become huge as the blockchain grows. With the
current design of append-only chains, it seems inevitable
for ordinary nodes to eventually run out of storage and for
the blockchain network to be controlled by a few powerful
nodes. Then, it is plausible to seek an approach for “pruning”
the blockchain data without undermining its immutability.
Although hard forks such as SegWit [167] can be considered
a manual pruning process, it is better expected that the out-
of-date blocks “have the right to be forgotten” [222]. Un-
fortunately, except a handful of experimental proposal [223],
[224], the issues of data pruning, e.g., how to delete obsolete
transactions and migrate UTXOs buried in the chain, also
remains an open issue.

2) Support for Secure Big-Data Computation: In the ex-
isting research, privacy concerns for blockchains are mostly
placed on the levels of identity registration and encrypted data
delivery (see SectionVIT=B)). With more and more demands for
big-data processing in various fields [225], [226], the question
arises regarding whether it is also possible to provide on-
or off-blockchain support for secure Multi-Party Computation
(MPC). For example, hospitals may want to learn patterns for
diagnosis by using the private electronic medical records from
the patients without seeing the raw data. In such a scenario,

the existing privacy policies offered by blockchains (e.g.,
access authentication) turn out to be insufficient. This issue is
partially touched in [227] for mobile federated learning, where
each node connected to the blockchain trains on the same
structure of deep neural network with the local data. Then,
they only exchange the locally trained model for global model
aggregation [228]. Note that in [227] the blockchain is merely
used to conduct a convoy of the locally trained parameters
as in [196]. Following such design arises a natural question,
namely, how can we directly offer general-purpose, privacy-
preserving MPC on-chain (e.g., in blocking mining work) or
off-chain with decentralized providers (cf. Figure [26)?

The question above generally remains unaddressed, and
only a few works [229], [230] can be found in the literature
with limited strength for specific-purpose MPC provision.
These works are based on the framework of cryptographic
MPC techniques and allow mutually trustless parties to com-
pute a joint function directly on their encrypted inputs to
obtain the right outcome. In [229], the multi-parties store their
public-key-encrypted data on an off-chain storage plain as
in [190], while in [230] the encrypted data is stored directly
on a permissioned blockchain (e.g., HyperLedger). However,
due to the quadratic message complexity of the existing
MPC protocols [229], only a small number of computation
parties can be supported on-chain [230]. Moreover, only a
limited number of mathematical operations (e.g., polynomial
functions) are supported by the protocols, and the MPC-based
blockchain framework is still far from matured.

VIIl. CONCLUSIONS

In this paper, we have provided a comprehensive survey
on the recent development of blockchain technologies, with a
specific emphasis on the designing methodologies and related
studies of permissionless, distributed consensus protocols.
We have provided in the survey a succinct overview of the
implementation stacks for blockchain networks, from where
we started our in-depth investigation into the design of con-
sensus protocols and their impact on the emerging applications
of blockchain networks. We have examined the influence
of the blockchain consensus protocols from the perspective
of three different interested parties, namely, the deployers
of blockchain networks, the consensus participants (i.e., the
consensus nodes) in the blockchain networks and the users of
blockchain networks.

We have provided a thorough review of the blockchain
consensus protocols including BFT-based protocols, Nakamoto
protocols, virtual mining and hybrid protocols, for which we
highlighted the link of permissionless consensus protocols to
the traditional Byzantine agreement protocols and their dis-
tinctive characteristics. We have also highlighted the necessity
of incentive compatibility in the protocol design, especially
for the permissionless blockchain networks. We have provided
an extensive survey on the studies regarding the incentive
mechanism embedded in the blockchain protocols. From a
game-theoretic perspective, we have also investigated their
influence on the strategy adoption of the consensus participants
in the blockchain networks.

Based on our comprehensive survey of the protocol design
and the consequent influence of the blockchain networks, we
have provided an outlook on the emerging applications of
blockchain networks in different areas. Our focus has been
put upon how traditional problems, especially in the areas of
telecommunication networks, can be reshaped with the intro-
duction of blockchain networks. This survey is expected to
serve as an efficient guideline for further understanding about
blockchain consensus mechanisms and for exploring potential
research directions that may lead to exciting outcomes in
related areas.

(1]

[2

(31

(41

(5]

(6]

[71

(8]

(9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES
S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash
system,” Self-published Paper, May 2008. [Online]. Available:

https://bitcoin.org/bitcoin.pdf

T. T. A. Dinh, R. Liu, M. Zhang, G. Chen, B. C. Ooi, and J. Wang, “Un-
tangling blockchain: A data processing view of blockchain systems,”
IEEE Transactions on Knowledge and Data Engineering, vol. 30, no. 7,
pp. 1366-1385, 2018.

F. Tschorsch and B. Scheuermann, “Bitcoin and beyond: A technical
survey on decentralized digital currencies,” IEEE Communications
Surveys Tutorials, vol. 18, no. 3, pp. 2084-2123, third quarter 2016.
J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W.
Felten, “Sok: Research perspectives and challenges for bitcoin and
cryptocurrencies,” in 2015 IEEE Symposium on Security and Privacy,
San Jose, CA, May 2015, pp. 104-121.

K. Christidis and M. Devetsikiotis, “Blockchains and smart contracts
for the internet of things,” IEEE Access, vol. 4, pp. 2292-2303, May
2016.

A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk:
The blockchain model of cryptography and privacy-preserving smart
contracts,” in 2016 IEEE Symposium on Security and Privacy (SP),
San Jose, CA, May 2016, pp. 839-858.

K. Yeow, A. Gani, R. W. Ahmad, J. J. P. C. Rodrigues, and K. Ko,
“Decentralized consensus for edge-centric internet of things: A review,
taxonomy, and research issues,” IEEE Access, vol. 6, pp. 1513-1524,
2018.

F. Glaser, “Pervasive decentralisation of digital infrastructures: A
framework for blockchain enabled system and use case analysis,” in
Proceedings of the 50th Hawaii International Conference on System
Sciences, Waikoloa, HI, Jan. 2017.

N. Kshetri, “Can blockchain strengthen the internet of things?” IT
Professional, vol. 19, no. 4, pp. 68-72, Aug. 2017.

N. Bozic, G. Pujolle, and S. Secci, “Securing virtual machine orches-
tration with blockchains,” in 2017 1st Cyber Security in Networking
Conference (CSNet), Rio de Janeiro, Brazil, Oct. 2017, pp. 1-8.

R. C. Merkle, “A digital signature based on a conventional encryption
function,” in Advances in Cryptology - CRYPTO ’87: Conference on the
Theory and Applications of Cryptographic Techniques, C. Pomerance,
Ed., Santa Barbara, CA, Aug. 1987, pp. 369-378.

A. Mohr, “A survey of zero-knowledge proofs with applications to
cryptography,” Southern lllinois University, Carbondale, Tech. Rep.,
2007.

O. Goldreich, “Zero-knowledge twenty years after its inven-
tion,” IACR Cryptology ePrint Archive, Report 2002/186, 2002,
https://eprint.iacr.org/2002/186

M. Raynal, Communication and agreement abstractions for fault-
tolerant asynchronous distributed systems, ser. Synthesis Lectures on
Distributed Computing Theory. ~ Williston, VT: Morgan & Claypool
Publishers, May 2010.

F. B. Schneider, “Implementing fault-tolerant services using the state
machine approach: A tutorial,” ACM Computing Surveys, vol. 22, no. 4,
pp. 299-319, Dec. 1990.

S. Bano, A. Sonnino, M. Al-Bassam, S. Azouvi, P. McCorry, S. Meik-
lejohn, and G. Danezis, “Sok: Consensus in the age of blockchains,”
arXiv preprint arXiv:1711.03936, 2017.

M. Castro and B. Liskov, “Practical byzantine fault tolerance and
proactive recovery,” ACM Transactions on Computer Systems, vol. 20,
no. 4, pp. 398461, Nov. 2002.

[18]

[19]

[20]

[21]

[22]

[23]

[24]
[25]
[26]
[27]
[28]
[29]
[30]
[31]
[32]

[33]

[34]

[35]

[36]

371

[38]

[39]

[40]

[41]

[42]

[43]

M. Vukoli¢, “The quest for scalable blockchain fabric: Proof-of-work
vs. bft replication,” in Open Problems in Network Security: IFIP WG
11.4 International Workshop, Zurich, Switzerland, Oct. 2015, pp. 112—
125.

Z. Zheng, S. Xie, H.-N. Dai, and H. Wang, “Blockchain challenges
and opportunities: A survey,” School of Data and Computer Science,
Sun Yat-sen University, Tech. Rep., 2016.

M. Conti, S. K. E, C. Lal, and S. Ruj, “A survey on security and privacy
issues of bitcoin,” IEEE Communications Surveys Tutorials, pp. 1-1,
May 2018, early access.

N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in Principles of Security and Trust: 6th Inter-
national Conference, POST 2017, Held as Part of the European Joint
Conferences on Theory and Practice of Software, Uppsala, Sweden,
Apr. 2017, pp. 164-186.

S. Ghosh, Distributed systems: an algorithmic approach. CRC press,
2014.

J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone
protocol: Analysis and applications,” in Advances in Cryptology -
EUROCRYPT 2015: 34th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Part Il, Sofia,
Bulgaria, Apr. 2015, pp. 281-310.

S. Popov, “The tangle version 1.4.3,” I0TA Foundation, Tech. Rep.,
Apr. 2018.

Y. Sompolinsky and A. Zohar, “Secure high-rate transaction processing
in bitcoin,” in 19th International Conference on Financial Cryptogra-
phy and Data Security, San Juan, Puerto Rico, Jan. 2015, pp. 507-527.
Y. Sompolinsky, Y. Lewenberg, and A. Zohar, “Spectre: A fast and
scalable cryptocurrency protocol,” IACR Cryptology ePrint Archive,
Report 2016/1159, 2016, |https://eprint.iacr.org/2016/1159,

P. Maymounkov and D. Mazieres, “Kademlia: A peer-to-peer informa-
tion system based on the xor metric,” in Peer-to-Peer Systems: First
International Workshop, Cambridge, MA, Mar. 2002, pp. 53-65.
Ethereum Foundation, “Ethereum wire protocol
https://github.com/ethereum/wiki/wiki/Ethereum-Wire-Protocol),
accessed: 2017-11-15.

V.5

——, “Whisper protocol v.5,” https://github.com/ethereum/go-ethereum/wiki/Whisper-

accessed: 2017-11-15.

https://github.com/telehash/telehash.github.io} accessed: 2017-11-15.
JSON-RPC Working Group, “Json-rpc 2.0 specification,” 2012.

D. Schwartz, N. Youngs, and A. Britto, “The ripple protocol consensus
algorithm,” Ripple Labs Inc White Paper, vol. 5, 2014.

1. Bentov, A. Gabizon, and A. Mizrahi, “Cryptocurrencies without proof
of work,” in International Conference on Financial Cryptography and
Data Security, Christ Church, Barbados, Feb. 2016, pp. 142-157.

X. Xu, |. Weber, M. Staples, L. Zhu, J. Bosch, L. Bass, C. Pautasso,
and P. Rimba, “A taxonomy of blockchain-based systems for archi-
tecture design,” in 2017 IEEE International Conference on Software
Architecture (ICSA), Gothenburg, Sweden, Apr. 2017, pp. 243-252.

V. Buterin, “Ethereum: A next-generation smart con-
tract and decentralized application platform,” Ethereum
Foundation, Tech. Rep., 2014. [Online]. Available:

https://github.com/ethereum/wiki/wiki/White- Paper

Protocol Labs, “Filecoin: A decentralized storage network,” Protocol
Labs, Tech. Rep., Aug. 2017.

K. Wang, H. Yin, W. Quan, and G. Min, “Enabling collaborative edge
computing for software defined vehicular networks,” IEEE Network,
vol. 32, no. 5, pp. 112-117, Sep. 2018.

A. Kiayias and G. Panagiotakos, “On trees, chains and fast transactions
in the blockchain,” IACR Cryptology ePrint Archive, Report 2016/545,
2016, |https://eprint.iacr.org/2016/545.

C. Cachin, “Architecture of the hyperledger blockchain fabric,” in
Workshop on Distributed Cryptocurrencies and Consensus Ledgers
(DCCL 2016), Chicago, IL, Jul. 2016.

F. Baldimtsi, A. Kiayias, T. Zacharias, and B. Zhang, “Indistinguishable
proofs of work or knowledge,” in Advances in Cryptology — ASI-
ACRYPT 2016, Hanoi, Vietnam, 2016, pp. 902-933.

D. Chatzopoulos, M. Ahmadi, S. Kosta, and P. Hui, “Flopcoin: A
cryptocurrency for computation offloading,” IEEE Transactions on
Mobile Computing, vol. 17, no. 5, pp. 1062-1075, May 2018.

J. Backman, S. Yrjl, K. Valtanen, and O. Mmmel, “Blockchain network
slice broker in 5g: Slice leasing in factory of the future use case,”
in 2017 Internet of Things Business Models, Users, and Networks,
Copenhagen, Denmark, Nov. 2017, pp. 1-8.

A. Mackenzie, S. Noether, and Monero Core Team, “Improving obfus-
cation in the cryptonote protocol,” Monero Research Lab, Tech. Rep.,
Jan. 2015.

https://bitcoin.org/bitcoin.pdf
https://eprint.iacr.org/2002/186
https://eprint.iacr.org/2016/1159
https://github.com/ethereum/wiki/wiki/Ethereum-Wire-Protocol
https://github.com/ethereum/go-ethereum/wiki/Whisper-Overview
https://github.com/telehash/telehash.github.io
https://github.com/ethereum/wiki/wiki/White-Paper
https://eprint.iacr.org/2016/545

[44]

[45]

[46]

[47]

[48]
[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, “Zcash protocol
specification,” Zerocoin Electric Coin Company, Tech. Rep., Dec. 2017.
C. Decker and R. Wattenhofer, “Information propagation in the bitcoin
network,” in Proceedings of IEEE International Conference on Peer-
to-Peer Computing, Trento, Italy, Sep. 2013, pp. 1-10.

A. Biryukov, D. Khovratovich, and I. Pustogarov, “Deanonymisation
of clients in bitcoin p2p network,” in Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, ser.
CCS ’14, Scottsdale, AZ, USA, 2014, pp. 15-29.

A. E. Gencer, S. Basu, I. Eyal, R. van Renesse, and E. G. Sirer,
“Decentralization in bitcoin and ethereum networks,” arXiv preprint
arXiv:1801.03998, 2018.

A. M. Antonopoulos, Mastering Bitcoin: unlocking digital cryptocur-
rencies. O’Reilly Media, Inc., 2014.

J. R. Douceur, “The sybil attack,” in First International Workshop on
Peer-to-Peer Systems, Cambridge, MA, Mar. 2002, pp. 251-260.

V. Buterin, “Bitcoin network shaken by blockchain fork,”
Bitcoin Mangazine, vol. 12, Mar. 2013. [Online]. Available:

[68]

[69]

[70]

[71]

[72]

C. Cachin, “Yet another visit to paxos,” IBM Research, Zurich, Switzer-
land, Tech. Rep. RZ3754, 2009.

J. Sousa, A. Bessani, and M. Vukolic, “A byzantine fault-tolerant
ordering service for the hyperledger fabric blockchain platform,” in
2018 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN), Luxembourg City, Luxembourg, Jun.
2018, pp. 51-58.

H. Kopp, C. Bosch, and F. Kargl, “Koppercoin — a distributed file
storage with financial incentives,” in 12th International Conference on
Information Security Practice and Experience, Zhangjiajie, China, Nov.
2016, pp. 79-93.

M. Jakobsson and A. Juels, “Proofs of work and bread pudding
protocols (extended abstract),” in Secure Information Networks: Com-
munications and Multimedia Security IFIP TC6/TC11 Joint Working
Conference on Communications and Multimedia Security (CMS’99),
Leuven, Belgium, Sep. 1999, pp. 258-272.

J. Aspnes, C. Jackson, and A. Krishnamurthy, “Exposing computa-
tionally challenged byzantine impostors,” Yale University, Tech. Rep.

https://bitcoinmagazine.com/articles/bitcoin-network-shaken-by-blockchain-fork- 3368 E44448E/ TR-1332, 2005.

C. Cachin, K. Kursawe, F. Petzold, and V. Shoup, “Secure and
efficient asynchronous broadcast protocols,” in Advances in Cryptology
— CRYPTO 2001: 21st Annual International Cryptology Conference.
Santa Barbara, CA: Springer Berlin Heidelberg, Aug. 2001, pp. 524—
541.

M. Correia, N. F. Neves, and P. \Verssimo, “From consensus to atomic
broadcast: Time-free byzantine-resistant protocols without signatures,”
The Computer Journal, vol. 49, no. 1, pp. 82-96, Jan. 2006.

C. Cachin and M. Vukolic, “Blockchain Consensus Protocols in the
Wild (Keynote Talk),” in 31st International Symposium on Distributed
Computing (DISC 2017), ser. Leibniz International Proceedings in
Informatics (LIPIcs), vol. 91, Vienna, Austria, 2017, pp. 1:1-1:16.

A. Miller and J. J. LaViola Jr, “Anonymous byzantine consensus from
moderately-hard puzzles: A model for bitcoin,” University of Central
Florida, Computer Science, Tech. Rep., Apr. 2014. [Online]. Available:
http://nakamotoinstitute.org/research/anonymous-byzantine-consensus
F. Sun and P. Duan, “Solving byzantine problems in synchronized
systems using bitcoin,” Self-published Paper, Sep. 2014. [Online].
Auvailable: |https://allquantor.at/blockchainbib/pdf/sun2014solving.pdf
S. Liu, P. Viotti, C. Cachin, V. Quéma, and M. Vukolic, “Xft:
Practical fault tolerance beyond crashes.” in 12th USENIX Symposium
on Operating Systems Design and Implementation, Savannah, GA, Nov.
2016, pp. 485-500.

N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic
game theory. Cambridge University Press Cambridge, 2007, vol. 1.
M. Babaioff, S. Dobzinski, S. Oren, and A. Zohar, “On bitcoin and red
balloons,” in Proceedings of the 13th ACM Conference on Electronic
Commerce, ser. EC "12. New York, NY: ACM, Jun. 2012, pp. 56-73.
S. Athey, |. Parashkevov, V. Sarukkai, and J. Xia, “Bitcoin pricing,
adoption, and usage: Theory and evidence,” Stanford Institute for
Economic Policy Research, Tech. Rep. Working Paper No. 3469, Aug.
2016.

A. Gervais, G. O. Karame, V. Capkun, and S. Capkun, “Is bitcoin a
decentralized currency?” IEEE Security Privacy, vol. 12, no. 3, pp.
54-60, May 2014.

I. Eyal and E. G. Sirer, “Majority is not enough: Bitcoin mining
is vulnerable (revised selected papers),” in Financial Cryptography
and Data Security: 18th International Conference, Christ Church,
Barbados, Mar. 2014, pp. 436-454.

O. Ersoy, Z. Ren, Z. Erkin, and R. L. Lagendijk, “Information propaga-
tion on permissionless blockchains,” arXiv preprint arXiv:1712.07564,
2017.

J. Wu, S. Guo, H. Huang, W. Liu, and Y. Xiang, “Information and
communications technologies for sustainable development goals: State-
of-the-art, needs and perspectives,” IEEE Communications Surveys
Tutorials, vol. 20, no. 3, pp. 2389-2406, thirdquarter 2018.

J. Debus, “Consensus methods in blockchain systems,” Frankfurt
School of Finance & Management, Blockchain Center, Tech. Rep.,
May 2017.

J. A. Kroll, I. C. Davey, and E. W. Felten, “The economics of bitcoin
mining, or bitcoin in the presence of adversaries,” in Proceedings of
The Workshop on the Economics of Information Security (WEIS), vol.
2013, Washington, D.C., Jun. 2013.

M. Rosenfeld, “Analysis of bitcoin pooled mining reward systems,”
arXiv preprint arXiv:1112.4980, 2011.

J. Zou, B. Ye, L. Qu, Y. Wang, M. A. Orgun, and L. Li, “A proof-of-
trust consensus protocol for enhancing accountability in crowdsourcing
services,” IEEE Transactions on Services Computing, pp. 1-1, 2018.

[73]

[74]

[75]

[76]

(771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

J. Alwen and B. Tackmann, “Moderately hard functions: Definition,
instantiations, and applications,” in Proceedings of the 15th Interna-
tional Conference on Theory of Cryptography: Part I, Baltimore, MD,
Nov. 2017, pp. 493-526.

S. Micali, M. Rabin, and S. Vadhan, “Verifiable random functions,”
in 40th Annual Symposium on Foundations of Computer Science (Cat.
N0.99CB37039), New York City, NY, Oct. 1999, pp. 120-130.

E. Ben-Sasson, A. Chiesa, D. Genkin, E. Tromer, and M. Virza, “Snarks
for c: Verifying program executions succinctly and in zero knowledge,”
in Advances in Cryptology — CRYPTO 2013: 33rd Annual Cryptology
Conference, Santa Barbara, CA, Aug. 2013, pp. 90-108.

S. King and S. Nadal, “Ppcoin: Peer-to-peer crypto-currency with
proof-of-stake,” Self-published Paper, Aug. 2012. [Online]. Available:
https://peercoin.net/assets/paper/peercoin-paper.pdf

A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
provably secure proof-of-stake blockchain protocol,” in Advances in
Cryptology — CRYPTO 2017: 37th Annual International Cryptology
Conference, Santa Barbara, CA, Aug. 2017, pp. 357-388.

I. Bentov, C. Lee, A. Mizrahi, and M. Rosenfeld, “Proof of activity:
Extending bitcoin’s proof of work via proof of stake (extended ab-
stract),” ACM SIGMETRICS Performance Evaluation Review, vol. 42,
no. 3, pp. 34-37, Dec. 2014.

M. Milutinovic, W. He, H. Wu, and M. Kanwal, “Proof of luck: An
efficient blockchain consensus protocol,” in Proceedings of the 1st
Workshop on System Software for Trusted Execution, ser. SysTEX 16,
Trento, Italy, Dec. 2016, pp. 2:1-2:6.

M. O. Rabin, “Transaction protection by beacons,” Journal of Com-
puter and System Sciences, vol. 27, no. 2, pp. 256 — 267, 1983.

A. Biryukov and D. Khovratovich, “Equihash: Asymmetric proof-of-
work based on the generalized birthday problem,” Ledger Journal,
vol. 2, pp. 1-30, Apr. 2017.

A. Miller, A. Kosba, J. Katz, and E. Shi, “Nonoutsourceable scratch-
off puzzles to discourage bitcoin mining coalitions,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS ’15. Denver, CO: ACM, Oct. 2015, pp. 680-691.
T. Moran and I. Orlov, “Rational proofs of space-time,” Bar-llan
University Cyber Center, Tech. Rep., 2017.

M. Ball, A. Rosen, M. Sabin, and P. N. Vasudevan, “Proofs of
useful work,” IACR Cryptology ePrint Archive, Report 2017/203, 2017,
https://eprint.iacr.org/2017/203!

S. Al-Kuwari, J. H. Davenport, and R. J. Bradford, “Crypto-
graphic hash functions: Recent design trends and security no-
tions,” IACR Cryptology ePrint Archive, Report 2011/565, 2011,
https://eprint.iacr.org/2011/565|

J. A. Garay, A. Kiayias, and G. Panagiotakos, “Proofs of work
for blockchain protocols,” IACR Cryptology ePrint Archive, Report
2017/775, Aug. 2017.

D. Kraft, “Difficulty control for blockchain-based consensus systems,”
Peer-to-Peer Networking and Applications, vol. 9, no. 2, pp. 397-413,
Mar 2016.

K. Saito and H. Yamada, “What’s so different about blockchain? —
blockchain is a probabilistic state machine,” in 2016 IEEE 36th In-
ternational Conference on Distributed Computing Systems Workshops
(ICDCSW), Nara, Japan, Jun. 2016, pp. 168-175.

J. Garay, A. Kiayias, and N. Leonardos, “The bitcoin backbone
protocol with chains of variable difficulty,” in Advances in Cryptology
— CRYPTO 2017, Santa Barbara, CA, Aug. 2017, pp. 291-323.

https://bitcoinmagazine.com/articles/bitcoin-network-shaken-by-blockchain-fork-1363144448/
http://nakamotoinstitute.org/research/anonymous-byzantine-consensus
https://allquantor.at/blockchainbib/pdf/sun2014solving.pdf
https://peercoin.net/assets/paper/peercoin-paper.pdf
https://eprint.iacr.org/2017/203
https://eprint.iacr.org/2011/565

[90]

[91]
[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

L. Fan and H.-S. Zhou, “A scalable proof-of-stake blockchain in
the open setting (or, how to mimic nakamoto’s design via proof-
of-stake),” IACR Cryptology ePrint Archive, Report 2017/656, 2017,
https://eprint.iacr.org/2017/656.

M. B. Taylor, “The evolution of bitcoin hardware,” Computer, vol. 50,
no. 9, pp. 58-66, 2017.

www.coinmarketcap.com, |https://coinmarketcap.com/coins/views/all/}
accessed: 2017-11-15.

A. Kiayias and G. Panagiotakos, “Speed-security tradeoffs in
blockchain protocols,” IACR Cryptology ePrint Archive, Report
2015/1019, 2015, |https://eprint.iacr.org/2015/1019.

R. Pass, L. Seeman, and A. Shelat, “Analysis of the blockchain protocol
in asynchronous networks,” in Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Paris, France,
May 2017, pp. 643-673.

K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels, A. Kosha,
A. Miller, P. Saxena, E. Shi, E. Giin Sirer, D. Song, and R. Wattenhofer,
“On scaling decentralized blockchains,” in Financial Cryptography and
Data Security: International Workshops on BITCOIN, VOTING and
WAHC, Christ Church, Barbados, Feb. 2016, pp. 106-125.

P. R. Rizun, “Subchains: A technique to scale bitcoin and improve the
user experience,” Ledger, vol. 1, pp. 38-52, 2016.

X. Liu, W. Wang, D. Niyato, N. Zhao, and P. Wang, “Evolutionary
game for mining pool selection in blockchain networks,” IEEE Wireless
Communications Letters, pp. 1-1, Mar. 2018, early access.

P. R. Rizun, “A transaction fee market exists without a block size limit,”
Self-published Paper, Aug. 2015.

M. Ghosh, M. Richardson, B. Ford, and R. Jansen, “A torpath to
torcoin: proof-of-bandwidth altcoins for compensating relays,” U.S.
Naval Research Laboratory, Washington, DC, Tech. Rep., 2014.

F. Zhang, I. Eyal, R. Escriva, A. Juels, and R. V. Renesse, “REM:
Resource-efficient mining for blockchains,” in 26th USENIX Security
Symposium (USENIX Security 17). Vancouver, BC: USENIX Asso-
ciation, Aug. 2017, pp. 1427-1444.

S. Park, K. Pietrzak, J. Alwen, G. Fuchsbauer, and P. Gazi, “Spacecoin:
A cryptocurrency based on proofs of space,” MIT, Tech. Rep., Jun.
2015.

J. Blocki and H.-S. Zhou, “Designing proof of human-work puzzles
for cryptocurrency and beyond,” in 14th International Conference on
Theory of Cryptography, Beijing, China, Oct. 2016, pp. 517-546.

S. King, “Primecoin: Cryptocurrency with prime number proof-

of-work,” Self-published Paper, Jul. 2013. [Online]. Available:
http://primecoin.io/bin/primecoin-paper.pdf
J. Andersen and E. Weisstein, “Cunningham chain. from

mathworld-a wolfram web resource,” 2005. [Online]. Available:
http://mathworld.wolfram.com/CunninghamChain.html

A. Shoker, “Sustainable blockchain through proof of exercise,” in
2017 IEEE 16th International Symposium on Network Computing and
Applications (NCA), Cambridge, MA, Oct. 2017, pp. 1-9.

M. Ball, A. Rosen, M. Sabin, and P. N. Vasudevan, “Average-case fine-
grained hardness,” in Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, ser. STOC 2017, Montreal,
Canada, 2017, pp. 483-496.

A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to
identification and signature problems,” in Proceedings on Advances in
cryptology—CRYPTO ’86, Santa Barbara, California, USA, Aug. 1986,
pp. 186-194.

S. Johnson, V. Scarlata, C. Rozas, E. Brickell, and F. Mckeen, “Intel ®
software guard extensions: Epid provisioning and attestation services,”
Intel, Tech. Rep., 2016.

A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz, “Permacoin: Repur-
posing bitcoin work for data preservation,” in 2014 IEEE Symposium
on Security and Privacy, San Jose, CA, May 2014, pp. 475-490.

A. Juels and B. S. Kaliski, Jr., “Pors: Proofs of retrievability for large
files,” in Proceedings of the 14th ACM Conference on Computer and
Communications Security. New York, NY, USA: ACM, Oct. 2007,

pp. 584-597.
S. Wilkinson, “Storj a peer-to-peer cloud storage network,”
Storj Labs Inc., Tech. Rep., Dec. 2014. [Online]. Available:

https://storj.1o/storj.pdf

D. Vorick and L. Champine, “Sia: Simple decentralized storage,”
Nebulous Inc., Tech. Rep., Nov. 2014. [Online]. Available:
https://coss.io/documents/white-papers/siacoin.pdf

D. Wagner, “A generalized birthday problem,” in Advances in Cryp-
tology — CRYPTO 2002, Santa Barbara, California, Aug. 2002, pp.
288-304.

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger (eip-150 revision),” Ethereum Project Yellow Paper, vol. 151,
2017.

P. Daian, I. Eyal, A. Juels, and E. G. Sirer, “(short paper) piecework:
Generalized outsourcing control for proofs of work,” in Financial
Cryptography and Data Security: FC 2017 International Workshops
on WAHC, BITCOIN, VOTING, WTSC, and TA, Sliema, Malta, Apr.
2017, pp. 182-190.

S. Dziembowski, S. Faust, V. Kolmogorov, and K. Pietrzak, “Proofs
of space,” in Advances in Cryptology — CRYPTO 2015: 35th Annual
Cryptology Conference, Santa Barbara, CA, Aug. 2015, pp. 585-605.
L. von Ahn, M. Blum, N. J. Hopper, and J. Langford, “Captcha:
Using hard ai problems for security,” in Advances in Cryptology
— EUROCRYPT 2003: International Conference on the Theory and
Applications of Cryptographic Techniques, Warsaw, Poland, May 2003,
pp. 294-311.

D. Hofheinz, T. Jager, D. Khurana, A. Sahai, B. Waters, and
M. Zhandry, “How to generate and use universal samplers,” in Ad-
vances in Cryptology — ASIACRYPT 2016: 22nd International Con-
ference on the Theory and Application of Cryptology and Information
Security, Hanoi, Vietnam, Dec. 2016, pp. 715-744.

N. T. Courtois, “On the longest chain rule and programmed self-
destruction of crypto currencies,” arXiv preprint arXiv:1405.0534,
2014.

R. Recabarren and B. Carbunar, “Hardening stratum, the bitcoin pool
mining protocol,” Proceedings on Privacy Enhancing Technologies,
vol. 2017, no. 3, pp. 57-74, 2017.

A. Laszka, B. Johnson, and J. Grossklags, “When bitcoin mining pools
run dry,” in Financial Cryptography and Data Security: FC 2015
International Workshops on BITCOIN, WAHC and Wearable, San Juan,
Puerto Rico, Jan. 2015, pp. 63-77.

M. Maschler, E. Solan, and S. Zamir, Game Theory.
University Press, 2013.

I. Abraham, D. Malkhi, K. Nayak, L. Ren, and A. Spiegelman,
“Solidus: An incentive-compatible cryptocurrency based on permis-
sionless byzantine consensus,” arXiv preprint arXiv:1612.02916, 2016.
A. Stone, “An examination of single transaction blocks and their
effect on network throughput and block size,” Self-published Paper,
Jun. 2015. [Online]. Available: http://ensocoin.org/resources/1txn.pdf

K. Bager, D. Y. Huang, D. McCoy, and N. Weaver, “Stressing out:
Bitcoin “stress testing”,” in Financial Cryptography and Data Security:
International Workshops on BITCOIN, VOTING and WAHC, Christ
Church, Barbados, Feb. 2016, pp. 3-18.

G. Pappalardo, T. Di Matteo, G. Caldarelli and T. Aste,
“Blockchain inefficiency in the bitcoin peers network,” arXiv preprint
arXiv:1704.01414, 2017.

M. Mdser and R. Bohme, “Trends, tips, tolls: A longitudinal study of
bitcoin transaction fees,” in Financial Cryptography and Data Security:
FC 2015 International Workshops on BITCOIN, WAHC and Wearable,
San Juan, Puerto Rico, Jan. 2015, pp. 19-33.

N. Houy, “The economics of bitcoin transaction fees,” GATE Groupe
d’Analyse et de Théorie Economique Lyon-St Etienne, Tech. Rep., Feb.
2014.

S. Feng, W. Wang, Z. Xiong, D. Niyato, P. Wang, and S. Wang,
“On cyber risk management of blockchain networks: A game theoretic
approach,” IEEE Transactions on Services Computing, pp. 1-1, Oct.
2018, early access.

N. Dimitri, “Bitcoin mining as a contest,” Ledger Journal, vol. 2, pp.
31-37, Apr. 2017.

Z. Xiong, S. Feng, W. Wang, D. Niyato, P. Wang, and
Z. Han, “Cloud/fog computing resource management and pricing for
blockchain networks,” IEEE Internet of Things Journal, pp. 1-1, 2018,
early access.

Y. Jiao, P. Wang, D. Niyato, and Z. Xiong, “Social welfare maxi-
mization auction in edge computing resource allocation for mobile
blockchain,” in 2018 IEEE International Conference on Communica-
tions (ICC), Kansas City, Kansas, May 2018.

N. Houy, “The bitcoin mining game,” Ledger Journal, vol. 1, no. 13,
pp. 53 — 68, 2016.

K. Nayak, S. Kumar, A. Miller, and E. Shi, “Stubborn mining:
Generalizing selfish mining and combining with an eclipse attack,”
in 2016 IEEE European Symposium on Security and Privacy (EuroS
P), Saarbriicken, Germany, Mar. 2016, pp. 305-320.

M. Carlsten, “The impact of transaction fees on bitcoin mining strate-
gies,” Master’s thesis, Princeton University, 2016.

A. Sapirshtein, Y. Sompolinsky, and A. Zohar, “Optimal selfish mining
strategies in bitcoin,” in Financial Cryptography and Data Security:

Cambridge

https://eprint.iacr.org/2017/656
https://coinmarketcap.com/coins/views/all/
https://eprint.iacr.org/2015/1019
http://primecoin.io/bin/primecoin-paper.pdf
http://mathworld.wolfram.com/CunninghamChain.html
https://storj.io/storj.pdf
https://coss.io/documents/white-papers/siacoin.pdf
http://ensocoin.org/resources/1txn.pdf

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

20th International Conference, Revised Selected Papers, Christ Church,
Barbados, Feb. 2017, pp. 515-532.

Y. Sompolinsky and A. Zohar, “Bitcoin’s security model revisited,”
arXiv preprint arXiv:1605.09193, 2016.

A. Gervais, G. O. Karame, K. Wist, V. Glykantzis, H. Ritzdorf,
and S. Capkun, “On the security and performance of proof of work
blockchains,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’16. Vienna,
Austria: ACM, Oct. 2016, pp. 3-16.

J. Gbhel, H. Keeler, A. Krzesinski, and P. Taylor, “Bitcoin blockchain
dynamics: The selfish-mine strategy in the presence of propagation
delay,” Performance Evaluation, vol. 104, no. Supplement C, pp. 23 —
41, 2016.

J. Beccuti and C. Jaag, “The bitcoin mining game: On the
optimality of honesty in proof-of-work consensus mechanism,” Swiss
Economics, Working Papers 0060, Aug. 2017. [Online]. Available:
https://ideas.repec.org/p/chc/wpaper/0060.html

Z. Han, D. Niyato, W. Saad, T. Basar, and A. Hjgrungnes, Game
theory in wireless and communication networks: theory, models, and
applications. Cambridge University Press, 2012.

D. K. Tosh, S. Shetty, X. Liang, C. A. Kamhoua, K. A. Kwiat, and
L. Njilla, “Security implications of blockchain cloud with analysis
of block withholding attack,” in 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), Madrid,
Spain, May 2017, pp. 458-467.

L. Luu, R. Saha, I. Parameshwaran, P. Saxena, and A. Hobor, “On
power splitting games in distributed computation: The case of bitcoin
pooled mining,” in 2015 IEEE 28th Computer Security Foundations
Symposium, Verona, Italy, Jul. 2015, pp. 397-411.

I. Eyal, “The miner’s dilemma,” in 2015 IEEE Symposium on Security
and Privacy, San Jose, CA, May 2015, pp. 89-103.

S. Bag, S. Ruj, and K. Sakurai, “Bitcoin block withholding attack:
Analysis and mitigation,” IEEE Transactions on Information Forensics
and Security, vol. 12, no. 8, pp. 1967-1978, Aug. 2017.

S. Bag and K. Sakurai, “Yet another note on block withholding
attack on bitcoin mining pools,” in 19th International Conference on
Information Security, Honolulu, HI, Sep. 2016, pp. 167-180.
“Slushpool,” Dec. 2017. [Online]. Available:
https://slushpool.com/home/

A. Kiayias, I. Konstantinou, A. Russell, B. David, and R. Oliynykov, “A
provably secure proof-of-stake blockchain protocol,” IACR Cryptology
ePrint Archive, vol. 2016, p. 889, 2016.

L. Chen, L. Xu, N. Shah, Z. Gao, Y. Lu, and W. Shi, “On security
analysis of proof-of-elapsed-time (poet),” in 19th International Sym-
posium on Stabilization, Safety, and Security of Distributed Systems,
Boston, MA, Nov. 2017, pp. 282-297.

“Slimcoin: A peer-to-peer crypto-currency with proof-of-burn,”
www.slimcoin.org, Tech. Rep., May 2014. [Online]. Available:

https://github.com/slimcoin-project/slimcoin-project.github. |o/bIob/master/MyEqp&peq&,Mpﬁf7 Erkin,

L. Ren, “Proof of stake velocity: Building the social currency of
the digital age,” Self-published Paper, Apr. 2014. [Online]. Available:
https://coss.1o/documents/white-papers/reddcoin.pdf

I. Bentov, R. Pass, and E. Shi, “Snow white: Provably secure proofs of
stake,” IACR Cryptology ePrint Archive, vol. 2016, p. 919, Sep. 2016.
B. David, P. GaZi, A. Kiayias, and A. Russell, “Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain,” in
Advances in Cryptology — EUROCRYPT 2018, Tel Aviv, Israel, Apr.
2018, pp. 66-98.

V. Buterin and V. Griffith, “Casper the friendly finality gadget,” arXiv
preprint arXiv:1710.09437, 2017.

W. Li, S. Andreina, J.-M. Bohli, and G. Karame, “Securing proof-
of-stake blockchain protocols,” in Data Privacy Management, Cryp-
tocurrencies and Blockchain Technology: ESORICS 2017 International
Workshops, Oslo, Norway, Sep. 2017, pp. 297-315.

A. Poelstra, “Distributed consensus from proof of stake is
impossible,” Self-published Paper, May 2014. [Online]. Available:
https://download.wpsoftware.net/bitcoin/old-pos.pdf

N. Houy, “It will cost you nothing to kill a proof-of-stake crypto-
currency,” GATE Groupe d’Analyse et de Théorie Economique Lyon-St
Etienne, Tech. Rep., 2014.

I. Eyal, A. E. Gencer, E. G. Sirer, and R. V. Renesse, “Bitcoin-
ng: A scalable blockchain protocol,” in 13th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 16). Santa
Clara, CA: USENIX Association, Mar. 2016, pp. 45-59.

C. Decker, J. Seidel, and R. Wattenhofer, “Bitcoin meets strong
consistency,” in Proceedings of the 17th International Conference on

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

L=

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

Distributed Computing and Networking, ser. ICDCN ’16, Singapore,
2016, pp. 13:1-13:10.

R. Pass and E. Shi, “Hybrid Consensus: Efficient Consensus in the
Permissionless Model,” in 31st International Symposium on Distributed
Computing (DISC 2017), vol. 91, Vienna, Austria, Oct. 2017, pp. 39:1-
39:16.

M. K. Reiter, “A secure group membership protocol,” IEEE Transac-
tions on Software Engineering, vol. 22, no. 1, pp. 31-42, Jan. 1996.
E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford,
“Enhancing bitcoin security and performance with strong consistency
via collective signing,” in 25th USENIX Security Symposium (USENIX
Security 16), Austin, TX, Aug. 2016, pp. 279-296.

J. Kwon, “Tendermint: Consensus without mining (draft),”
Self-published Paper, fall 2014. [Online]. Available:
https://tendermint.com/static/docs/tendermint.pdf

“Proof of authority chains,” Jan. 2018. [Online]. Available:

https://github.com/paritytech/parity

D. Larimer, “Delegated proof-of-stake (dpos),”
Tech. Rep., 2014.

Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algo-
rand: Scaling byzantine agreements for cryptocurrencies,” in Proceed-
ings of the 26th Symposium on Operating Systems Principles (SOSP
’17). Shanghai, China: ACM, Oct. 2017, pp. 51-68.

E. Lombrozo, J. Lau, and P. Wuille, “Segregated witness
(consensus layer),” Tech. Rep., Dec. 2015. [Online]. Available:
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki

J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-
chain instant payments,” Lightning Labs, Tech. Rep., Nov. 2016.

M. Green and I. Miers, “Bolt: Anonymous payment channels for
decentralized currencies,” in Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, ser. CCS ’17.
Dallas, Texas, USA: ACM, Oct. 2017, pp. 473-489.

J. Lind, I. Eyal, F. Kelbert, O. Naor, P. Pietzuch, and E. G. Sirer,
“Teechain: Scalable blockchain payments using trusted execution en-
vironments,” arXiv preprint arXiv:1707.05454, 2017.

K. Okupski, “Bitcoin developer reference,” Technische Universiteit
Eindhoven, Tech. Rep., Jul. 2016. [Online]. Available:
http://enetium.com/resources/Bitcoin.pdf

A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell,
A. Miller, A. Poelstra, J. Timon, and P. Wuille, “Enabling blockchain
innovations with pegged sidechains,” Blockstream Inc., Tech. Rep.
[Online]. Available: |http://kevinriggen.com/files/sidechains.pdf

A. Kiayias, A. Miller, and D. Zindros, “Non-interactive proofs of proof-
of-work,” IACR Cryptology ePrint Archive, Report 2017/963, 2017,
https://eprint.iacr.org/2017/963.

A. Kiayias, N. Lamprou, and A.-P. Stouka, “Proofs of proofs of work
with sublinear complexity,” in International Conference on Financial
Cryptography and Data Security, Christ Church, Barbados, Feb. 2016,

Bitshare whitepaper,

“A scale-out blockchain for value transfer with
spontaneous sharding,” arXiv preprint arXiv:1801.02531v2, 2018.

A. E. Gencer, R. van Renesse, and E. G. Sirer, “Short paper: Service-
oriented sharding for blockchains,” in Financial Cryptography and
Data Security, Sliema, Malta, Apr. 2017, pp. 393-401.

L. Luu, V. Narayanan, C. Zheng, K. Baweja, S. Gilbert, and P. Saxena,
“A secure sharding protocol for open blockchains,” in Proceedings of
the 2016 ACM SIGSAC Conference on Computer and Communications
Security, ser. CCS "16. Vienna, Austria: ACM, Oct. 2016, pp. 17-30.
M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the
presence of faults,” Journal of the ACM, vol. 27, no. 2, pp. 228-234,
1980.

E. Kokoris Kogias, P. S. Jovanovic, L. Gasser, N. Gailly, E. Syta, and
B. A. Ford, “Omniledger: A secure, scale-out, decentralized ledger via
sharding,” in 2018 IEEE Symposium on Security and Privacy (SP), San
Francisco, CA, May 2018, pp. 583-598.

M. Zamani, M. Movahedi, and M. Raykova, “Rapidchain: Scaling
blockchain via full sharding,” IACR Cryptology ePrint Archive, Report
2018/460, 2018, |https://eprint.iacr.org/2018/460.

E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J.
Fischer, and B. Ford, “Scalable bias-resistant distributed randomness,”
in 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA,
May 2017, pp. 444-460.

Y. Lewenberg, Y. Sompolinsky, and A. Zohar, “Inclusive block chain
protocols,” in Financial Cryptography and Data Security, San Juan,
Puerto Rico, Jan. 2015, pp. 528-547.

A. Churyumov, “Byteball: a decentralized system for storage and
transfer of value,” byteball.org, Tech. Rep., 2017.

https://ideas.repec.org/p/chc/wpaper/0060.html
https://slushpool.com/home/
https://github.com/slimcoin-project/slimcoin-project.github.io/blob/master/whitepaperSLM.pdf
https://coss.io/documents/white-papers/reddcoin.pdf
https://download.wpsoftware.net/bitcoin/old-pos.pdf
https://tendermint.com/static/docs/tendermint.pdf
https://github.com/paritytech/parity
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
http://enetium.com/resources/Bitcoin.pdf
http://kevinriggen.com/files/sidechains.pdf
https://eprint.iacr.org/2017/963
https://eprint.iacr.org/2018/460

[184]

[185]
[186]

[187]

[188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

[198]

[199]

[200]

[201]

[202]

[203]

[204]

[205]

C. Li, P. Li, W. Xu, F. Long, and A. C.-c. Yao, “Scaling nakamoto
consensus to thousands of transactions per second,” arXiv preprint
arXiv:1805.03870, 2018.

S. Popov, O. Saa, and P. Finardi, “Equilibria in the tangle,” arXiv
preprint arXiv:1712.05385, 2017.

G. Hileman and M. Rauchs, “2017 global blockchain benchmarking
study,” Cambridge Centre for Alternative Finance, Tech. Rep., 2017.

M. Bartoletti and L. Pompianu, “An analysis of bitcoin op_return
metadata,” in Financial Cryptography and Data Security, Malta, Apr.
2017, pp. 218-230.

H. A. Kalodner, M. Carlsten, P. Ellenbogen, J. Bonneau, and
A. Narayanan, “An empirical study of namecoin and lessons for
decentralized namespace design,” in 2015 Workshop on the Economics
of Information Security (WEIS). Delft, Netherlands: TUDelft, Jun.
2015.

M. Ali, J. Nelson, R. Shea, and M. J. Freedman, “Blockstack: A
global naming and storage system secured by blockchains,” in 2016
USENIX Annual Technical Conference (USENIX ATC 16). Denver,
CO: USENIX Association, Jun. 2016, pp. 181-194.

H. Shafagh, L. Burkhalter, A. Hithnawi, and S. Duquennoy, “Towards
blockchain-based auditable storage and sharing of iot data,” in Proceed-
ings of the 2017 on Cloud Computing Security Workshop, ser. CCSW
’17. Dallas, Texas, USA: ACM, Nov. 2017, pp. 45-50.

R. Li, T. Song, B. Mei, H. Li, X. Cheng, and L. Sun, “Blockchain
for large-scale internet of things data storage and protection,” IEEE
Transactions on Services Computing, pp. 1-1, Jul. 2018, early access.
T. McConaghy, R. Marques, A. Miiller, D. De Jonghe, T. Mc-
Conaghy, G. McMullen, R. Henderson, S. Bellemare, and A. Granzotto,
“Bigchaindb: a scalable blockchain database,” BigChainDB White
Paper, 2016.

W. Wang, D. Niyato, P. Wang, and A. Leshem, “Decentralized caching
for content delivery based on blockchain: A game theoretic perspec-
tive,” in 2018 IEEE International Conference on Communications
(ICC), Kansas City, USA, May 2018, pp. 1-6.

P. Goyal, R. Netravali, M. Alizadeh, and H. Balakrishnan, “Se-
cure incentivization for decentralized content delivery,” arXiv preprint
arXiv:1808.00826, 2018.

S. Raju, S. Boddepalli, S. Gampa, Q. Yan, and J. S. Deogun, “ldentity
management using blockchain for cognitive cellular networks,” in
2017 IEEE International Conference on Communications (ICC), Paris,
France, May 2017, pp. 1-6.

S. Y. Nikouei, R. Xu, D. Nagothu, Y. Chen, A. Aved, and E. Blasch,
“Real-time index authentication for event-oriented surveillance video
query using blockchain,” arXiv preprint arXiv:1807.06179, 2018.

C. Xu, K. Wang, and M. Guo, “Intelligent resource management in
blockchain-based cloud datacenters,” IEEE Cloud Computing, vol. 4,
no. 6, pp. 50-59, November 2017.

X. Liang, S. Shetty, D. Tosh, C. Kamhoua, K. Kwiat, and L. Njilla,
“Provchain: A blockchain-based data provenance architecture in cloud
environment with enhanced privacy and availability,” in 2017 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID), Madrid, Spain, May 2017, pp. 468-477.

A. Lewko and B. Waters, “Unbounded hibe and attribute-based en-
cryption,” in Advances in Cryptology — EUROCRYPT 2011, Tallinn,
Estonia, May 2011, pp. 547-567.

N. Fotiou and G. C. Polyzos, “Decentralized name-based security for
content distribution using blockchains,” in 2016 IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS), San
Francisco, CA, Apr. 2016, pp. 415-420.

F. R. Yu, M. Huang, and H. Tang, “Biologically inspired consensus-
based spectrum sensing in mobile ad hoc networks with cognitive
radios,” IEEE Network, vol. 24, no. 3, pp. 26-30, May 2010.

S. Raju, S. Boddepalli, N. Choudhury, Q. Yan, and J. S. Deogun,
“Design and analysis of elastic handoff in cognitive cellular networks,”
in 2017 IEEE International Conference on Communications (ICC),
Paris, France, May 2017.

K. Kotobi and S. G. Bilen, “Secure blockchains for dynamic spectrum
access: A decentralized database in moving cognitive radio networks
enhances security and user access,” IEEE Vehicular Technology Mag-
azine, vol. 13, no. 1, pp. 32-39, Mar. 2018.

A. Lei, H. Cruickshank, Y. Cao, P. Asuquo, C. P. A. Ogah, and Z. Sun,
“Blockchain-based dynamic key management for heterogeneous intel-
ligent transportation systems,” IEEE Internet of Things Journal, vol. 4,
no. 6, pp. 1832-1843, 2017.

Z. Yang, K. Yang, L. Lei, K. Zheng, and V. C. M. Leung, “Blockchain-
based decentralized trust management in vehicular networks,” IEEE
Internet of Things Journal, pp. 1-1, May 2018, early access.

[206]

[207]

[208]

[209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

[220]

[221]

[222]

[223]

[224]

[225]

[226]

[227]

Z. Chen, S. Chen, H. Xu, and B. Hu, “A security authentication scheme
of 5g ultra-dense network based on block chain,” IEEE Access, pp. 1-1,
Sep. 2018, early access.

N. Herbaut and N. Negru, “A model for collaborative blockchain-based
video delivery relying on advanced network services chains,” IEEE
Communications Magazine, vol. 55, no. 9, pp. 70-76, 2017.

P. K. Sharma, M. Chen, and J. H. Park, “A software defined fog node
based distributed blockchain cloud architecture for iot,” IEEE Access,
vol. 6, pp. 115-124, 2018.

M. Li, J. Weng, A. Yang, and W. Lu, “Crowdbc: A blockchain-
based decentralized framework for crowdsourcing,” Online, available
at: https://eprint.iacr.org/2017/444.pdf.

S. Feng, W. Wang, D. Niyato, D. I. Kim, and P. Wang, “Competitive
data trading in Wireless-Powered internet of things (loT) crowdsensing
systems with blockchain,” in 2018 IEEE International Conference on
Communication Systems, Chengdu, China, Dec. 2018.

J. Wang, M. Li, Y. He, H. Li, K. Xiao, and C. Wang, “A blockchain
based privacy-preserving incentive mechanism in crowdsensing appli-
cations,” IEEE Access, vol. 6, pp. 17 545-17 556, 2018.

N. Z. Aitzhan and D. Svetinovic, “Security and privacy in decentralized
energy trading through multi-signatures, blockchain and anonymous
messaging streams,” IEEE Transactions on Dependable and Secure
Computing, vol. 15, no. 5, pp. 840-852, Sep. 2018.

J. Kang, R. Yu, X. Huang, S. Maharjan, Y. Zhang, and E. Hossain, “En-
abling localized peer-to-peer electricity trading among plug-in hybrid
electric vehicles using consortium blockchains,” IEEE Transactions on
Industrial Informatics, vol. PP, no. 99, pp. 1-1, 2017.

Z. Li, J. Kang, R. Yu, D. Ye, Q. Deng, and Y. Zhang, “Consortium
blockchain for secure energy trading in industrial internet of things,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 8, pp. 3690-
3700, Aug 2018.

Z. Su, Y. Wang, Q. Xu, M. Fei, Y. Tian, and N. Zhang, “A secure
charging scheme for electric vehicles with smart communities in energy
blockchain,” IEEE Internet of Things Journal, pp. 1-1, 2018, early
access.

Y. Zhang, M. Pan, L. Song, Z. Dawy, and Z. Han, “A survey of contract
theory-based incentive mechanism design in wireless networks,” IEEE
Wireless Communications, vol. 24, no. 3, pp. 80-85, Jun. 2017.

N. C. Luong, Z. Xiong, P. Wang, and D. Niyato, “Optimal auction for
edge computing resource management in mobile blockchain networks:
A deep learning approach,” in 2018 IEEE International Conference on
Communications (ICC), Kansas City, Kansas, May 2018, pp. 1-6.

Z. Xiong, Y. Zhang, D. Niyato, P. Wang, and Z. Han, “When mobile
blockchain meets edge computing,” IEEE Communications Magazine,
vol. 56, no. 8, pp. 33-39, Aug. 2018.

M. Liu, R. Yu, Y. Teng, V. C. M. Leung, and M. Song, “Computation
offloading and content caching in wireless blockchain networks with
mobile edge computing,” IEEE Transactions on Vehicular Technology,
pp. 1-1, 2018, early access.

K. Suankaewmanee, D. T. Hoang, D. Niyato, S. Sawadsitang,
P. Wang, and Z. Han, “Performance analysis and application of
mobile blockchain,” in 2018 International Conference on Computing,
Networking and Communications (ICNC), Maui, Hawaii, Mar. 2018,
pp. 642-646.

P. Tsankov, A. Dan, D. D. Cohen, A. Gervais, F. Buenzli, and
M. Vechev, “Securify: Practical security analysis of smart contracts,”
arXiv preprint arXiv:1806.01143, 2018.

R. Dennis, G. Owenson, and B. Aziz, “A temporal blockchain: A
formal analysis,” in 2016 International Conference on Collaboration
Technologies and Systems (CTS), Orlando, FL, Oct. 2016, pp. 430-437.
J. Sidhu, “Syscoin: A peer-to-peer electronic cash system with
blockchain-based services for e-business,” in 2017 26th International
Conference on Computer Communication and Networks (ICCCN),
Vancouver, BC, Jul. 2017, pp. 1-6.

J. Bruce, “The mini-blockchain
Self-published Paper, Mar. 2017.
http://cryptonite.info/files/mbc-scheme-rev3.pdf
J. Wu, S. Guo, J. Li, and D. Zeng, “Big data meet green challenges:
Big data toward green applications,” IEEE Systems Journal, vol. 10,
no. 3, pp. 888-900, Sep. 2016.

M. Mohammadi, A. Al-Fugaha, S. Sorour, and M. Guizani, “Deep
learning for iot big data and streaming analytics: A survey,” IEEE
Communications Surveys Tutorials, pp. 1-1, 2018, early access.

H. Kim, J. Park, M. Bennis, and S.-L. Kim, “On-device federated
learning via blockchain and its latency analysis,” arXiv preprint
arXiv:1808.03949, 2018.

scheme
[Online].

rev 37
Available:

http://cryptonite.info/files/mbc-scheme-rev3.pdf

[228]

[229]

[230]

J. Konecny, H. B. McMahan, D. Ramage, and P. Richtarik, “Federated
optimization: Distributed machine learning for on-device intelligence,”
arXiv preprint arXiv:1610.02527, 2016.

G. Zyskind, O. Nathan, and A. Pentland, “Enigma: Decentral-
ized computation platform with guaranteed privacy,” arXiv preprint
arXiv:1506.03471, 2015.

F. Benhamouda, S. Halevi, and T. Halevi, “Supporting private data on
hyperledger fabric with secure multiparty computation,” in 2018 IEEE
International Conference on Cloud Engineering (IC2E), Orlando, FL,
Apr. 2018, pp. 357-363.

	I Introduction
	II Protocol Overview and Preliminaries
	II-A Overview of Blockchain Network Protocols
	II-B Cryptographic Data Organization
	II-B1 Transactions, Addresses and Signatures
	II-B2 Block Organization, Hash Pointer and Merkle Tree

	II-C Blockchain Networks
	II-D Consensus in Blockchain Networks
	II-E Nakamoto Consensus Protocol and Incentive Compatibility

	III Distributed Consensus Mechanisms Based on Proof of Concepts
	III-A Permissionless Consensus via Zero-Knowledge Proofs
	III-B Nakamoto Protocol Based on Primitive Proof of Work
	III-C Proof of Concepts Attached to Useful Resources
	III-D Proof of Concepts for Performance Improvement

	IV Strategies of Rational Nodes in the Framework of Nakamoto Consensus Protocols
	IV-A Incentive Compatibility of Nakamoto Protocols
	IV-B Resource Investment and Transaction Selection for Mining under Nakamoto Protocols
	IV-C Rational Mining and Exploitation of Nakamoto Protocols
	IV-C1 Selfish Mining Strategy
	IV-C2 Block Withholding in Pool-Based Mining
	IV-C3 Lie-in-Wait Mining in Pools
	IV-C4 Pool Hopping Strategy

	V Virtual Block Mining and Hybrid Consensus Mechanisms beyond Proof of Concepts
	V-A Proof of Stake and Virtual Mining
	V-B Issues of Incentive Compatibility in PoS
	V-C Hybrid Consensus Protocols

	VI Relaxed and Parallel Consensus Protocols for Performance Scalability
	VI-A Off-chain and Side-chain Techniques
	VI-B Sharding for Scale-out Throughput
	VI-C Nonlinear Block Organization

	VII Emerging Applications and Research Issues of Blockchains with Public Consensus
	VII-A General-Purpose Data Storage
	VII-B Access Control and Self-Organization
	VII-B1 Access Control in Wireless Networks
	VII-B2 Self-Organization and Security Enhancement under Various Network Architectures
	VII-B3 Trusted Broking Services in Cyber-Physical Systems

	VII-C Consensus Provision and Computation Offloading under Nakamoto Protocols
	VII-D Some Open Issues and Potential Directions
	VII-D1 Cost of Decentralization
	VII-D2 Support for Secure Big-Data Computation

	VIII Conclusions
	References

