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Abstract—The past decade has witnessed the rapid evolution
in blockchain technologies, which has attracted tremendous
interests from both the research communities and industries. The
blockchain network was originated from the Internet financial
sector as a decentralized, immutable ledger system for transac-
tional data ordering. Nowadays, it is envisioned as a powerful
backbone/framework for decentralized data processing and data-
driven self-organization in flat, open-access networks. In partic-
ular, the plausible characteristics of decentralization, immutabil-
ity and self-organization are primarily owing to the unique
decentralized consensus mechanisms introduced by blockchain
networks. This survey is motivated by the lack of a comprehensive
literature review on the development of decentralized consensus
mechanisms in blockchain networks. In this survey, we provide a
systematic vision of the organization of blockchain networks. By
emphasizing the unique characteristics of incentivized consensus
in blockchain networks, our in-depth review of the state-of-
the-art consensus protocols is focused on both the perspective
of distributed consensus system design and the perspective of
incentive mechanism design. From a game-theoretic point of
view, we also provide a thorough review on the strategy adoption
for self-organization by the individual nodes in the blockchain
backbone networks. Consequently, we provide a comprehensive
survey on the emerging applications of the blockchain networks
in a wide range of areas. We highlight our special interest in how
the consensus mechanisms impact these applications. Finally, we
discuss several open issues in the protocol design for blockchain
consensus and the related potential research directions.

Index Terms—Blockchain, permissionless consensus, Byzantine
fault tolerance, mining, incentive mechanisms, game theory, P2P
networks.

I. INTRODUCTION

In the past decade, blockchain networks have gained tremen-

dous popularity for their capabilities of distributively provid-

ing immutable ledgers as well as platforms for data-driven

autonomous organization. Proposed by the famous grassroot

cryptocurrency project “Bitcoin” [1], the blockchain network

was originally adopted as the backbone of a public, distributed

ledger system to process asset transactions in the form of
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digital tokens between Peer-to-Peer (P2P) users. Blockchain

networks, especially those adopting open-access policies, are

distinguished by their inherent characteristics of disinterme-

diation, public accessibility of network functionalities (e.g.,

data transparency) and tamper-resilience [2]. Therefore, they

have been hailed as the foundation of various spotlight Fin-

Tech applications that impose critical requirement on data

security and integrity (e.g., cryptocurrencies [3], [4]). Further-

more, with the distributed consensus provided by blockchain

networks, blockchains are fundamental to orchestrating the

global state machine1 for general-purpose bytecode execution.

Therefore, blockchains are also envisaged as the backbone

of the emerging open-access, trusted virtual computers [6]

for decentralized, transaction-driven resource management in

communication networks and distributed autonomous sys-

tems [5], [7]. For these reasons, blockchain technologies have

been heralded by both the industry and academia as the

fundamental “game changer” [8] in decentralization of digital

infrastructures ranging from the financial industry [4] to a

broad domain including Internet of Things (IoTs) [9] and self-

organized network orchestration [10].

Generally, the term “blockchain networks” can be inter-

preted from two levels, namely, the “blockchains” which

refer to a framework of immutable data organization, and the

“blockchain networks” on top of which the approaches of data

deployment and maintenance are defined. The two aspects are

also considered as the major innovation of blockchain tech-

nologies. For data organization, blockchain technologies em-

ploy a number of off-the-shelf cryptographic techniques [11]–

[13] and cryptographically associate the users’ on-chain iden-

tities with the transactions of their tokenized assets. Thus,

blockchains are able to provide the proofs of authentication for

asset (i.e., token) transfer and then the proofs of asset owner-

ships. Furthermore, a blockchain maintains an arbitrary order

of the transactional records by cryptographically chaining the

record subsets in the form of data “blocks” to their chronic

predecessors. With the help of cryptographic references, any

attempt of data tampering can be immediately detected. From

the perspective of network organization, the problem of repli-

cated agreement [14], [15] on a single/canonical transaction

history among trustless nodes is creatively tackled by the

blockchain consensus protocols in an open-access, weakly

synchronized network. Blockchain consensus protocols are

1Distributed consensus orchestrates the states of replicated program ex-
ecution on decentralized notes. It provides the runtime environment for
distributively verifying the output of the same program. Therefore, the
blockchain network is also known as a distributed Virtual Machine (VM)
in the literature [5].
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able to offer the agreement on the global blockchain-data state

among a large number of trustless nodes with no identity

authentication and low messaging overhead [16]. To achieve

this, a number of blockchain networks, e.g., Bitcoin, choose to

incorporate an incentive-based block creation process known

as “block mining” in their protocols. With distributed consen-

sus, the blockchain can be viewed as a universal memory of

the blockchain network. Meanwhile, the blockchain network

can be viewed as a virtual computer (i.e., distributed VM)

comprised by every node therein.

With the rapid evolution in blockchain technologies, the

demand for the higher-level quality of services by blockchain-

based applications presents more critical challenges in de-

signing blockchain protocols. Particularly, the performance of

blockchain networks significantly relies on the performance

of the adopted consensus mechanisms, e.g., in terms of

data consistency, speed of consensus finality, robustness to

arbitrarily behaving nodes (i.e., Byzantine nodes [15]) and

network scalability. Compared with the classical Byzantine

consensus protocols allowing very limited network scalability

in distributed systems [15], [17], most of the existing con-

sensus protocols in open-access blockchain networks (e.g.,

Bitcoin) guarantee the better network scalability at the cost

of limited processing throughput. Also, to achieve decentral-

ized consensus among poorly synchronized, trustless nodes, a

number of these protocols incur huge consumption of physical

resources (e.g., computing power) [3]. Moreover, to ensure

a high probability of consensus finality, the protocols may

also impose high latency for transaction confirmation. Out of

such concerns, a large volume of research has been conducted

with the aim of improving the performance of the open-access

blockchain consensus protocols in specific aspects. However,

in spite of a few short surveys [16], [18], a comprehensive

study on the development of these consensus protocols and

the related problems is still missing. Especially, there is a

lack of a concise overview on how such a development can

be interpreted under a uniform framework and how it impacts

the potential applications of blockchain networks.

During the past decade, the scope of blockchain networks

has been expanded way further from tamper-evident dis-

tributed ledgers. However, due to the recent market frenzy

about cryptocurrencies, most of the existing general reviews

and surveys on blockchains emphasize narrowly the scenarios

of using blockchain networks as the backbone technologies for

cryptocurrencies, especially the market-dominant ones such

as Bitcoin and Ethereum [2]–[5], [18]–[21]. For example,

the issues regarding the client (user)-side application (i.e.,

wallet), P2P network protocols, consensus mechanisms and

user privacy in the scope of Bitcoin are discussed in [3], [4].

In [19], a brief summary of the emerging blockchain-based

applications ranging from finance to IoTs is provided. A sys-

tematic survey is conducted in [20] with respect to the security

in the Bitcoin network including the identified attacks on the

consensus mechanisms and the privacy/anonymity issues of

the Bitcoin clients. In [5], [21], the special issues regarding

the design, application and security of the smart contracts2

are reviewed in the context of the Ethereum network. In [7],

[16], two brief surveys on consensus protocols in blockchain

networks are provided.

The existing surveys on the fast-developing studies of

blockchain technologies rarely provide a global view on

the issues related to consensus protocols. Our work aims

to fill this gap by providing a comprehensive survey on

this specific topic. To distinguish our study from the exist-

ing works, we present our survey on blockchain networks

from the perspective of consensus formation, especially in

open-access3 P2P networks. In analogy to the distributed

database, blockchain consensus is perceived as a process

of collaborative state transitions among distributed nodes in

the framework of blockchain-specified data organization. We

emphasize that such a viewpoint brings the taxonomy of

blockchain networks into a paradigm that is comparable to the

classical problems of global state maintenance in distributed

systems [22]. Therefore, we are able to cast our analysis of

blockchain networks into the context of classical fault-tolerant

studies by focusing on the standard consensus properties in

distributed systems (i.e., the Agreement-Validity-Termination

properties [22, Chapter 13.1]). We provide a uniform view

of blockchain networks by presenting a number of imple-

mentation stacks and revealing the interconnection between

different protocol components therein. We align our survey

on blockchain consensus protocols with a uniform framework

based on Zero-Knowledge (ZK) prover-verifier systems [12],

[13] in Section III. By focusing on the blockchain protocols

for data organization, network organization, and consensus

maintenance, our survey contributes in the following aspects:

(1) providing a brief overview on the data organization and

network protocols of blockchain networks,

(2) providing a generic paradigm for the consensus mech-

anisms using cryptographic techniques in open-access

blockchain networks,

(3) reviewing the studies on the behaviors of the ratio-

nal (profit-driven) nodes in the consensus processes of

blockchain networks,

(4) providing an in-depth review on the research effort toward

addressing the concerns (e.g., performance vs. scalabil-

ity) for blockchain networks with different roadmaps of

consensus protocol design, and

(5) providing an outlook of the research in the emerging

decentralized applications built on top of the consensus

layer, which may not be limited to the framework of the

prevalent blockchain technologies (cf. our discussion in

Sections III-VI).

The rest of this survey is organized as follows. Section II

provides an introductory overview on the protocol organi-

zation of blockchain networks. Section III provides an in-

2A smart contract is a deterministic program stored as executable bytecode
on the blockchain [5], [21]. Its replicas are independently executed in the
local VMs/containers on some or all nodes in the network, where the same
triggering transactions produce the same output on all the honest nodes.

3We consider the property of opens access to all network functionalities
instead of only open-access blockchain data. Throughout the survey, we use
the terms “opens-access” and “permissionless” interchangeably.
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Figure 1. An overview of the blockchain network implementation stacks. The arrow direction indicates the influence on protocol component selection.

depth survey on the popular approaches of consensus protocol

design for open-access networks using linear blockchains.

Consequently, Section IV provides a survey on the studies

of the rational nodes’ strategies in these consensus processes

and their impact on the performance of blockchain networks.

Section V extends our survey on blockchain consensus pro-

tocols to the emerging fields including virtual block-mining

(i.e., blockchain-extension) mechanism and hybrid consensus.

Section VI briefly reviews the emerging cross-layer design re-

garding the data organization and consensus protocols, namely,

the “next-generation blockchains” which may have different

roadmaps for scalability and performance other than the

prevalent blockchain paradigm. Section VII provides a short

review of the emerging applications of blockchains as well as

an outlook of the potential research directions in the context

of telecommunication networks. Section VIII concludes this

survey by summarizing the contributions.

II. PROTOCOL OVERVIEW AND PRELIMINARIES

A. Overview of Blockchain Network Protocols

The core task of a blockchain network is to ensure that

the trustless nodes in the network reach the agreement upon

a single tamper-proof record of transactions. The network is

expected to tolerate a portion of the nodes deviating from this

canonical record with their local views of data (i.e., replica).

From the perspective of system design, a blockchain network

can be abstracted into four implementation levels. These

levels are the protocols of data and network organization,

the protocols of distributed consensus, the framework of au-

tonomous organization relying on smart contracts [5] executed

in distributed VMs and the implementation of human-machine

interfaces (i.e., application). Following the approach of proto-

col layer definition in the Open Systems Interconnection (OSI)

model, we provide in Figure 1 an overview of these layers in

blockchain networks and the related ingredient technologies.

The data organization protocols provide a number of in-

gredient cryptographic functionalities [11]–[13] to establish

unique and secured node identities in a blockchain network.

The protocols also define the approaches to form the cryp-

tographic dependence among all the records, e.g., transaction

records and account balances, in a local blockchain replica

for ordering and tamper proof. From the perspective of data

representation, the term “blockchain” is named as such partly

for historical reason. In early networks such as Bitcoin [1], the

digitally signed transactional records are arbitrarily “packed

up” into a cryptographically tamper-evident data structure

known as the “block”. The blocks are then organized in a

chronological order as a “chain of blocks”, or more precisely,

a linear list of blocks linked by tamper-evident hash pointers.

Nevertheless, to improve the processing efficiency, network

scalability and security, the linear data organization framework

has been expanded into the nonlinear forms such as trees

and graphs of blocks [26], [38]. As in linear blockchains, the

partial orders are also determined by the chaining direction

between blocks. Furthermore, block-less, nonlinear data struc-

tures are also adopted in recent protocol design [24]. Despite

the different forms of block organization, cryptographic data

representation provides the fundamental protection of privacy

and data integrity for blockchain networks. When compared

with conventional database, it also provides more efficient on-

chain storage without harming the data integrity.

On the other hand, the network protocols provide the

means of P2P network organization, namely, peer/route dis-

covery and maintenance as well as encrypted data trans-

mission/synchronization over P2P links. Given reliable data

synchronization over P2P connections, the consensus layer

provides the core functionality to maintain the originality, con-

sistency and order of the blockchain data across the network.

From the perspective of distributed system design, the consen-

sus protocols provide Byzantine agreement [15] in blockchain



networks. More specifically, the nodes in the network expect to

agree on a common update, i.e., consensus, of the blockchain

state that they copy as the local replicas even in the presence

of possible conflicting inputs and arbitrary faulty (Byzantine)

behaviors of some nodes. When choosing the permissoned

access-control schemes of network functionalities, blockchain

networks usually adopt the well-studied Byzantine Faulty-

Tolerant (BFT) consensus protocols such as Practical BFT

(PBFT) [17] for reaching the consensus among a small group

of authenticated nodes (e.g., HyperLedger Fabric v0.5 [39]).

On the contrary, in open-access/permissionless blockchain net-

works, probabilistic Byzantine agreement is achieved by com-

bining a series of cryptographic techniques, e.g., cryptographic

puzzle systems [13], [40], and incentive mechanism design.

As pointed out in [18], permissioned consensus protocols

rely on a semi-centralized consensus framework and a higher

messaging overhead to provide immediate consensus finality

and thus high transaction processing throughput. In contrast,

permissionless consensus protocols are more appropriate for a

blockchain network with loose control on the synchroniza-

tion and behaviors of the nodes, but may only guarantee

probabilistic finality. In the condition of bounded delay and

honest majority, permissionless consensus protocols provide

significantly better support for network scalability at the cost

of a lower processing efficiency.

Provided that the robustness of the consensus protocols is

guaranteed, smart contracts are deployed on the distributed

virtual computer layer. In brief, this layer abstracts away the

details of data organization, information propagation and con-

sensus formation in blockchain networks. As the interoperation

layer between the lower-layer protocols and the applications,

the virtual computer layer defines the high-level programming

language implementation (e.g., Solidity in Ethereum [21])

for encoding smart contracts. It also provides the sandboxed

runtime environment (e.g., Ethreum VMs) to ensure the correct

execution of the replicated smart contracts on the network

level. The virtual computer layer may adopt different levels

of Turing-completeness for smart contract implementation,

ranging from stateless circuits in Bitcoin [1] to fully Turing-

complete state machines in Ethereum [35] and HyperLedger

Fabric [39]. Full Turing-completeness enables blockchain net-

works to perform general-purpose computation in a replicated

manner. For this reason, a blockchain network is able to

not only provide the services of trusted data recording and

timestamping, but also facilitate the functionalities of general-

purpose autonomous organization. Therefore, blockchain net-

works are able to work as the backbone of autonomous

organization systems for managing data or transaction-driven

interactions among the decentralized entities in the network.

On top of the virtual computer layer, the application layer

provides the end-user-visible interfaces such as Distributed

Applications (DApps) [41], [42] and cryptocurrencies.

B. Cryptographic Data Organization

When viewed as a data structure, a blockchain can be

abstracted as an infinitely-growing, append-only string that is

canonically agreed upon by the nodes in the blockchain net-

work [23]. For data organization, the local blockchain replica

of each node is organized in a hierarchical data structure of

three levels, namely, the transactions, the blocks and the chain.

Each level requires a different set of cryptographic function-

alities for the protection of data integrity and authenticity.

1) Transactions, Addresses and Signatures: Transactions

are the atomic data structure of a blockchain. Generally, a

transaction is created by a set of users or autonomous objects

(i.e., smart contracts) to indicate the transfer of tokens from

the senders to the specified receivers. A transaction specifies

a possibly empty list of inputs associating the token values

with the identities (i.e., addresses) of the sending users/objects.

It also specifies a nonempty list of outputs designating the

redistribution result of the input tokens among the associated

identities of the receivers. A transaction can be considered

as a static record showing the identities of the senders and

the receivers, the token value to be redistributed and the

state of token reception. To protect the authenticity of a

transaction record, the functionalities of cryptographic hashing

and asymmetric encryption are activated:

• Hash Function: A cryptographic hash function maps at

random an arbitrary-length binary input to a unique,

fixed-length binary output (i.e., image). With a secure

hash function (e.g., SHA-256), it is computationally in-

feasible to recover the input from the output image. Also,

the probability to generate the same output for any two

different inputs is negligible.

• Asymmetric Key: Each node in the blockchain network

generates a pair of private and public keys. The private

key is associated with a digital signature function, which

outputs a fixed-length signature string for any arbitrary-

length input message. The public key is associated with

a verification function, which takes as input the same

message and the acclaimed signature for that message.

The verification function only returns true when the

signature is generated by the signature function with the

corresponding private key and the input message.

The nodes in the network or the autonomous objects identify

themselves by revealing their public keys, namely, the hash-

code of their public keys, as their permanent addresses (also

known as their pseudo-identities) on the blockchain4. Since

each input tuple in a transaction is signed by the associated

sending account, the network is able to publicly validate the

authenticity of the input through verifying the signature based

on the sender’s public address.

2) Block Organization, Hash Pointer and Merkle Tree:

A block is a container of an arbitrary subset of transaction

records and can only be created by a node participating in the

consensus process. To protect the integrity of the transaction

records and to specify the ordering of adjacent blocks in a

consensus node’s local view, a data field known as the hash

pointer is kept in the block’s data structure. In addition, to

reduce the on-chain storage, the cryptographic data structure

of Merkle tree is also enabled to generate the tamper-evident

digest in the transaction set of a block (see Figure 2):

4Some cryptocurrency systems (e.g., Monero [43] and ZCash [44]) incorpo-
rate cryptographic techniques such as one-time signature and group signature
to create ephemeral addresses for enhancing anonymity.
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Figure 2. Illustration of a chain of blocks, where the transactions in a single
block is represented by a Merkle root.

• Hash pointer: A hash pointer to a block is the hashcode of

the concatenated data fields in that block. The hashcode

of the current block is stored as the header of that block.

The hashcodes of the reference blocks are stored as the

hash pointers of a block to indicate that at the local view,

the block recognizes that the transactions in the reference

blocks are created earlier than those in the current block.

• Merkle Tree [11]: A Merkle tree represents a transaction

set in the form of a binary tree. Therein, each leaf is

labeled with the hashcode of a transaction and a non-leaf

nodes is labeled with the hashcode of the concatenated

labels of its two child nodes. The root node of the

Merkle tree is known as the Merkle digest/root. A block

storing only the Merkle root of the selected transactions

is known to be in a lightweight form, which is sufficient

for quick validation and synchronization. When using the

lightweight-form storage, the node has to query its peers

to retrieve the complete transaction records in the blocks.

In addition to the Merkle digest, block header and the hash

pointers, a block may also contain auxiliary data fields, whose

definition varies with the adopted protocol of block generation

based on different consensus schemes. At a local view of

the blockchain, the blocks are organized based on the hash

pointers to their references/predecessors. Every blockchain

admits a unique block with no reference as the “genesis

block”, namely, the common ancestor block of all valid blocks

in the chain. According to the number of hash pointers to the

predecessors that are allowed to be kept by a block, the block

organization can vary from a linear linked list to a tree of

blocks (e.g., GHOST [25]) or a Directed Acyclic Graph (DAG)

(e.g., SPECTRE [26]). Without specification, we limit most of

our discussion on blockchains to the linear-list case, where the

total order of the blocks is guaranteed (see Figure 2).

C. Blockchain Networks

In a Byzantine environment, the identity management mech-

anism plays a key role in determining how the nodes in a

blockchain network are organized. In an open-access (i.e.,

public/permissionless) blockchain network, a node can freely

join the network and activate any available network func-

tionalities. Notice that the term “node” refers to a logical

entity (i.e., the identity of a blockchain user) rather than to

a physical device. For example, multiple “nodes” associated

with different network functionalities can be hosted on the

same physical machine. In alternative words, a physical device

may appear in multiple identities in the network. Without any

authentication scheme, the nodes are organized as overlay P2P

networks. Comparatively, in a consortium (i.e., permissioned)

blockchain network, only the authorized nodes are allowed to

enable the core functionalities such as consensus participation

or data propagation. The authorized nodes may be organized

in different topologies, e.g., fully connected networks or

P2P networks, according to the consensus protocols that the

networks adopt. In this paper, we mainly focus on the network

protocols in the permissionless cases.

In permissionless blockchain networks, the main goal of

the network protocol is to induce a random topology among

the nodes and propagate information efficiently for blockchain

replica synchronization. Most of the existing blockchain net-

works employ the ready-to-use P2P protocols with slight

modification for topology formation and data communication.

For peer discovery and topology maintenance, the nodes in

Bitcoin-like blockchain networks rely on querying a hard-

coded set of volunteer DNS servers, which return a random

set of bootstrapping nodes’ IP addresses for the new nodes

to initialize their peer lists [45], [46]. Nodes then request

or advertise addresses based on these lists. In contrast, the

Ethereum-like networks adopt a Kademlia-inspired protocol

based on Distributed Hash Tables (DHTs) [27] for peer/route

discovery5 through UDP connections. In blockchain networks,

the connection of a node to a peer is managed based on

reputation using a penalty score. A node will increase the

penalty score of the peer sending malformed messages until

the IP address of the faulty node is locally banned [28], [46].

To replicate the blockchain over all nodes in the network,

the messages of transactions and blocks are “broadcast”

through flooding the P2P links in a gossip-like manner.

Typically, a P2P link in blockchain networks is built upon

a persistent TCP connection after a protocol-level three-

way handshake, which exchanges the replica state and the

protocol/software version of each node [28], [47]. After the

connections to the peer nodes are established, another three-

way handshake occurs for a node to exchange new trans-

actions/blocks with its neighbors. The node first notifies its

peers with the hashcode of the new transactions/blocks that

it receives or generates. Then, the peers reply with the data-

transfer request specifying the hashcode of the information that

they need. Upon request, the transfer of transactions/blocks

is done via individual transfer messages6. The data transfer

in blockchain networks is typically implemented based on the

HTTP(s)-based Remote Procedure Call (RPC) protocol, where

the messages are serialized following the JSON protocol [28].

An open-access blockchain network does not explicitly

specify the role of each node. Nevertheless, according to the

enabled functionalities, the nodes in the network can be cate-

gorized as the lightweight nodes, the full nodes and the con-

sensus nodes [48]. Basically, all nodes are required to enable

5Kademlia measures the node distance using XOR distance of the node
addresses (hash values). The k-closest nodes are selected as neighbors.

6For example, the details of handshake and synchronization in the Ethereum
network are defined in the DEVp2p Wire Protocol [28].
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the routing functionality for message verification/propagation

and connection maintenance. A lightweight node (e.g., wallets)

only keeps the header of each block in its local storage. A full

node stores locally a complete and up-to-date replica of the

canonical blockchain. Compared with the lightweight nodes,

a full node is able to autonomously verify the transactions

without external reference. A consensus node enables the

functionality of consensus participation. Therefore, it is able

to publish new blocks and has a chance to influence the state

of the canonical blockchain. A consensus node can adopt

either complete storage or lightweight storage. In Figure 3,

we present an example of different node types in a pub-

lic blockchain network. Meanwhile, the lifecycle of a new

transaction is shown in Figure 4. It is worth noting that the

consensus nodes are often referred to as the “miners” or “min-

ing nodes” of blocks in the context of blockchain consensus

formation, especially when token rewards of block proposal

are involved. Meanwhile, different roles of nodes lead to the

inconsistency in their interests. Namely, the transaction-issuing

nodes (e.g., lightweight nodes) may not be the transaction-

approving nodes (i.e., consensus nodes). For this reason,

caution needs to be taken in protocol design to ensure that

the consensus nodes act on behalf of the others in a trustless

environment, especially on the consensus layer.

D. Consensus in Blockchain Networks

In the context of distributed system, the issue of maintain-

ing the canonical blockchain state across the P2P network

can be mapped as a fault-tolerant state-machine replication

problem [14]. In other words, each consensus node maintains

a local replicate (i.e., view) of the blockchain. An agreement

(i.e., consensus) on the unique common view of the blockchain

is expected to be achieved by the consensus nodes in the

condition of Byzantine/arbitrary failures7. In blockchain net-

works, Byzantine failures cause faulty nodes to exhibit ar-

bitrary behaviors including malicious attacks/collusions (e.g.,

Sybil attacks [49] and double-spending attacks [20]), node

mistakes (e.g., unexpected blockchain fork due to software

inconsistency [50]) and connection errors. We can roughly

consider that the sequence of blocks represents the blockchain

state, and the confirmation of a transaction incurs a blockchain

state transition. According to [14], [51], a blockchain updating

protocol is said to achieve the (probabilistic) consensus (a.k.a.

atomic broadcast8 [14], [52], [53]) in a Byzantine environment

if the following properties are (probabilistically) satisfied [16]:

• Validity (Correctness): If all the honest nodes activated

on a common state propose to expand the blockchain by

the same block, any honest node transiting to a new local

replica state adopts the blockchain headed by that block.

• Agreement (Consistency): If an honest node confirms a

new block header, then any honest node that updates its

local blockchain view will update with that block header.

• Liveness (Termination): All transactions originated from

the honest nodes will be eventually confirmed.

• Total order: All honest nodes accept the same order of

transactions as long as they are confirmed in their local

blockchain views.

The consensus protocols vary with different blockchain

networks. Since the permissioned blockchain networks admit

tighter control on the synchronization among consensus nodes,

they may adopt the conventional Byzantine Fault-Tolerant

(BFT) protocols (c.f., the primitive algorithms described

in [54], [55]) to provide the required consensus properties.

A typical implementation of such protocols can be found

in the Ripple network [32], where a group of synchronized

Ripple servers perform blockchain expansion through a voting

mechanism. Further, if an external oracle is introduced to

designate the primary node for block generation (e.g., with

HyperLedger Fabric v0.5 [39]), Practical BFT (PBFT) [17]

can be adopted to implement a three-phase commit scheme for

blockchain expansion. In a network of N consensus nodes, the

BFT-based protocols are able to conditionally tolerate ⌊N−1
5 ⌋

(e.g., [32]) to ⌊N−1
2 ⌋ (e.g., [56]) faulty nodes.

On the contrary, permissionless blockchain networks admit

no identity authentication or explicit synchronization schemes.

Therefore, the consensus protocol therein is expected to be

well scalable and tolerant to pseudo identities and poor syn-

chronization. Since any node is able to propose the state tran-

sition with its own candidate block for the blockchain header,

the primary goal of the consensus protocol in permissionless

networks is to ensure that every consensus node adheres to

the “longest chain rule” [3]. Namely, when the blocks are

organized in a linked list, at any time instance, only the longest

chain can be accepted as the canonical state of the blockchain.

7See [15], [17] for the formal definition of Byzantine failures.
8Here, the semantic of “broadcast” is consistent with that in the context of

distributed system/database. Namely, a message is atomically broadcast when
it is either received by every nonfaulty node, or by none at all.



Due to the lack of identity authentication, the direct voting-

based BFT protocols do not fit in permissionless blockchain

networks. Instead, the incentive-based consensus schemes such

as the Nakamoto consensus protocol [1] are widely adopted.

E. Nakamoto Consensus Protocol and Incentive Compatibility

To jointly address the problems of pseudonymity, scala-

bility and poor synchronization, Nakamoto proposed in [1]

a permissionless consensus protocol based on a framework

of cryptographic block-discovery racing game. This is also

known as the Proof of Work (PoW) scheme [2], [3]. From

a single node’s perspective, the Nakamoto consensus protocol

defines three major procedures, namely, the procedure of chain

validation, the procedure of chain comparison and extension

and the procedure of PoW solution searching [23]. The chain

validation predicate provides a Boolean judgment on whether

a given chain of blocks has the valid structural properties. It

checks if each block in the chain provides valid PoW solution

and no conflict between transactions as well as the historical

records exists. The function of chain comparison and extension

compares the length of a set of chains, which may be either

received from peer nodes or locally proposed. It guarantees

that an honest node only adopts the longest proposal among

the candidate views of the blockchain. The function of PoW

solution searching is the main “workhorse” of the protocol

and defines a cryptographic puzzle-solving procedure in a

computation-intensive manner.

In brief, PoW solution requires exhaustively querying a

cryptographic hash function for a partial preimage generated

from a candidate block, whose hashcode satisfies a pre-defined

condition. For simplicity of exposition, let H(·) denote the

hash function and x denote the binary string assembled based

on the candidate block data including the set of transactions

(e.g., Merkle root), the reference hash pointers, etc. Then, we

can formally define the PoW puzzle and solution as follows:

Definition 1. Given an adjustable hardness condition param-

eter h, the process of PoW puzzle solution aims to search

for a solution string, nonce, such that for a given string x
assembled based on the candidate block data, the hashcode

(i.e, the target block header bh) of the concatenation of x and

nonce is smaller than a target value D(h):

bh = H(x‖nonce) ≤ D(h), (1)

where for some fixed length of bits L, D(h) = 2L−h.

The Nakamoto protocol is computation-intensive since to

win the puzzle solving race, a node needs to achieve a hash

querying rate as high as possible. This property financially

prevents the Sybil attacks of malicious nodes by merely

creating multiple pseudo identities. On the other hand, the

economic cost (mainly electricity consumption) also renders

it impractical for any node to voluntarily participate the

consensus process at a consistent economic loss. To ensure

proper functioning of a permissionless blockchain network,

the Nakamoto protocol introduces incentives to probabilisti-

cally award the consensus participants based on an embedded

mechanism of token supply and transaction tipping [1]. From
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Figure 5. A (temporary) fork happens at nodes 1 and 2 when their local
PoW processes lead to different proposals of the new blockchain header, i.e.,
(t + 3) and (t +3)′ at the same time. Both (t + 3) and (t + 3)′ satisfy (1).

a game theoretic point of view, an implicit assumption adopted

by the Nakamoto consensus protocol is that all the participant

nodes are individually rational [57]. In return, the consensus

mechanism is expected to be incentive compatible. In other

words, the consensus protocol should ensure that any consen-

sus node will suffer from finical loss whenever it deviates from

truthfully following the protocol.

However, the incentive compatibility of the Nakamoto

protocol has been openly questioned [58]–[61]. Since the

Nakamoto protocol allows nodes to propose arbitrary blocks

from their local pending transaction set, it is inevitable for

the network to experience blockchain expansion race with a

(temporary) split, i.e., fork, in the local views of the blockchain

state [3], [20] (see Figure 5). To guarantee the consensus

properties and thus convergence to one canonical blockchain

state, the Nakamoto protocol relies on the assumption that

the majority of the consensus nodes follow the longest chain

rule and are altruistic in information forwarding. It has been

found in [58], [62] that rational consensus nodes may not

have incentive for transaction/block propagation. As a result,

the problem of blockchain forking may not be easily resolved

in the current framework of the Nakamoto protocol. Special

measures should be further taken in the protocol design, and

a set of folklore principles has been suggested to gear the

consensus mechanism towards a protocol for secured and

sustainable blockchain networks [4], [63]–[65]:

• The consensus mechanism should enforce that propagat-

ing information and extending the longest chain of block

are the monotonic strategies of the consensus nodes [65].

In other words, all the sub-stages in the consensus process

should be incentive-compatible in an open environment

with the tolerance to Byzantine and unfaithful faults.

• The consensus mechanism should encourage decentral-

ization and fairness. Namely, it should not only discour-

age coalition, e.g., botnets and mining pools [23], [66],

but also make the consensus process an uneasy prey of

the adversaries with cumulated computation power.

• The consensus mechanism should strike a proper balance

between processing throughput and network scalabil-

ity [53], [67].

III. DISTRIBUTED CONSENSUS MECHANISMS BASED ON

PROOF OF CONCEPTS

Based on the technical components of permissionless

blockchain networks introduced in Section II, now we are

ready to review the details about the designing methodologies

of the consensus protocol for permissionless blockchains. In
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this section, we start by presenting the consensus protocols

in the most prevalent blockchain networks in a uniform

framework. Then, we explore the different approaches of

extending/modifying the protocol to meet a series of specific

performance requirement.

A. Permissionless Consensus via Zero-Knowledge Proofs

For traditional BFT consensus protocols, e.g., Byzantine

Paxos [68] and PBFT [17], it is generally necessary to assume

a fully connected topology among the consensus nodes as

well as a leader-peer hierarchy for block proposal. The BFT

consensus process is organized explicitly in rounds of three-

way handshakes, thus synchronization between nodes with

bounded execution time and message latency is also required.

As illustrated in Figure 6, only the leader is responsible for

proposing new blocks to a consortium of peer nodes at the

proposal (pre-prepare) phase. This is followed by two all-to-all

messaging phases, where a peer node only accepts the proposal

(i.e., commit) when it receives more than a certain number

of proposal approvals from the other peers (e.g., ⌊n+f+1
3 ⌋

with PBFT for a network of n honest nodes and f Byzantine

nodes). These classical state-machine replication approaches

guarantee the properties of deterministic agreement and live-

ness in Byzantine environment, and are well-known for their

low processing latency [18]. However, the characteristics of

leader-peer hierarchy and high communication complexity

in Θ(n2) [68] naturally require the BFT-based blockchain

consensus protocols to be implemented in a small-scale per-

missioned network with centralized admission control. In order

to achieve full decentralization and high consensus scalability,

alternative approaches such as Nakamoto protocols become

critical in the design of blockchain’s consensus layer.

According to our discussion in Section II-E, the primary

functionality of PoW in the Nakamoto protocol is to simulate

the leader election in the traditional BFT protocols. The PoW

process abstracted by Definition 1 is essentially a verifiable

process of weighted random coin-tossing, where the prob-

ability of winning is no longer uniformly associated with

the nodes’ identities but in proportion to the resources, e.g.,

hashrate casted by the nodes. Then, we can consider that each

new block is generated by a time-independent “lottery”, where

the probability of being elected as the leader for block proposal

depends on the ratio between the casted resource of a node

(or a node coalition) and the total resources presented in the

entire network. Let wi denote the resource held by node i in a

network of node set N , then, the probability of node i winning

the leader-election in a PoW-like process should follow:

Prwin
i =

wi
∑

j∈N wj
, (2)

where wi generalizes the share of any verifiable resource

such as computational power [1], memory [44], storage [70],

etc. In contrast to the BFT protocols, the peer nodes accept

the received block proposal following the longest-chain-rule

after they verify the validity of the block and the transactions

therein. Since no all-to-all messaging phase is needed, the

Nakamoto protocol may have a much smaller message com-

plexity Ω(n) when the majority of the peers are honest [54].

As the core component of the Nakamoto protocol, the PoW

scheme originates from the idea of indirectly validating nodes’

identities in pseudonymous P2P networks through an identity

pricing mechanism [71], [72]. More specifically, the PoW

scheme described by Definition 1 is originally designed to

measure the voting power or the trustworthiness of a node

according to the constrained resources presented by the node

in the P2P network. Thus, the tolerable fraction of Byzantine

nodes in BFT protocols is replaced by a limited fraction of

the total computational power of the network [72]. Compared

with the original design, the PoW scheme in blockchain

networks is no longer used for direct identity verification

between peers. Instead, the PoW processes of all the nodes

in a blockchain network are expected to collectively simulate

a publicly verifiable random function to elect the leader of

block proposal following the distribution given by (2). Based

on such a design paradigm, PoW can be generalized into the

framework of Proof-of-Concepts (PoX) (cf. [3]). With PoX,

the nodes in the network are required to non-interactively

prove the possession or commitment of certain measurable

resources beyond hashrates in PoW. Furthermore, their collec-

tive behavior should also yield a stochastic process for leader

assignment following the distribution given in (2).

From a network-level perspective, PoX generally relies

on a pseudorandom oracle to provide the property of ver-

ifiable unpredictability. It also needs to implement a one-

way cryptographic puzzle for the proof of resource devoting

in the framework of non-interactive ZK Proofs (ZKPs). A

conventional ZKP system consists of two parties, namely,

the prover executing a computationally unbounded strategy to

generate the proof of an assertion without releasing it and the

verifier executing a probabilistic polynomial-time strategy to

verify it. A party is non-interactive when it can only choose

between publishing messages to the network and remaining

passive. Otherwise it is interactive. In the context of blockchain

consensus protocols, the ZKP framework is extended from

proving a private input (i.e., knowledge) to proving posses-

sion/consumption of a minimum amount of resource (e.g.,

computational work). Recent studies haven shown that with

specific puzzle design, proof of knowledge and proof of work

can be incorporate into a single framework of indistinguishable

Proofs of Work or Knowledge (PoWorK) [40], where the

prover of work makes calls to a certain puzzle solving al-

gorithm instead of sampling from a non-polynomial language

witness relation distribution. In general, the adopted puzzle



has to satisfy the basic soundness and completeness proper-

ties [12], [13]. Namely, an invalid proof should always be re-

jected by nonfaulty verifying nodes while a valid proof should

always be accepted by nonfaulty verifiers. A complexity gap is

expected such that the puzzle is easy to verify (in polynomial-

time) but (moderately) hard for adversaries to invert/solve [73].

Furthermore, in permissionless blockchain networks, any node

is able to publish arbitrary block proposals. In this situation,

a 3-step interactive prover-verifier ZK scheme with verifier-

designated challenges will lead to excessive message overhead.

This is the critical reason for requiring a non-interactive puz-

zle design. Following the generation-computation-verification

paradigm of non-interactive puzzles (cf. the verifiable random

function defined in [74]), we can abstract a PoX process into

the three stages described in Table I.

Table I
THREE-STAGE ABSTRACTION OF A POX PROCESS

Initialization (generator

of random seed or keys)

The initialization stage provides the prover and the

verifier the necessary information to run in subsequent

stages according to the PoX specifications. Typical

non-interactive ZKP systems, e.g., zk-SNARK [75]

have to query a trusted third-party key/random seed

generation protocol to produce a common reference

string for both the prover and the verifier.

Execution (challenge

and proof generator)

For non-interactive ZKP, the execution stage requires

the prover to generate according to the common refer-

ence string a random challenge that constitutes a self-

contained, uncompromisable computational problem,

namely, the puzzle. Meanwhile, a corresponding proof

(a.k.a. witness or puzzle solution) is also generated.

Verification In the verification stage, a verifier checks about the

proof’s correctness, which is determined solely based

on the information issued by the prover.

With the paradigm of PoX described above, we are now

ready to investigate the puzzle design problem for different

PoX schemes, which can be seen as modification or extension

to the existing PoW-based Nakamoto protocol (see [36], [76]–

[79] for examples). Since a trusted third party does not exist in

a permissionless blockchain network, special caution should

be taken in the puzzle design such that the freshness of

the puzzle is guaranteed at the execution stage. Namely, the

puzzle solution is unpredictable and the proof is non-reusable.

Theoretical analyses of blockchain networks, e.g., [77] may

assume such a property on the condition that the network has

access to a universal random sampler (a.k.a., random oracle) or

an ideal randomness beacon9. Nevertheless, due to full decen-

tralization of the permissionless blockchain networks, a case-

by-case study for different PoX schemes is usually needed

for practical implementation of the random oracle in order

to prevent puzzle grinding and leader election manipulation.

Apart from the aforementioned properties of non-invertibility,

completeness, soundness and freshness, the other requirements

for puzzle design in PoX may include but are not limited to

the following:

• The puzzle should be resistant to the aggregation [81] or

outsourcing [82] of the computational resources.

• The puzzle-solving process should be eco-friendly [33],

[76], [78], [79], [83].

9The concept of random beacon service is first proposed in [80], where a
trusted third party periodically emits random integers to the public.

• In addition to providing incentive based on resource

pricing mechanism, the puzzle-solving process should

provide useful services in the meanwhile [36], [84].

B. Nakamoto Protocol Based on Primitive Proof of Work

As we have reviewed in the previous discussion, the prim-

itive PoW scheme proposed in [1] works to financially dis-

incentivize the Sybil attacks on block proposal and maintains

a biased random leader election process in proportion to the

hashrate casted by each node. Recall that the input string x
to the PoW puzzle is a concatenation of the previous block’s

hash pointer and the payload data of the proposed block. For

the puzzle design of PoW, the reason of choosing the hash

function H(·) in (1), e.g., SHA-256 in practice lies in the fact

that a hash function is computationally indistinguishable from

a pseudorandom function, if it preserves the properties of colli-

sion resistance10 and pre-image resistance [85]. Since the ran-

dom output of H(·) is time-independent and only determined

by the input string, it plays the role of an uncompromisable

random oracle and outputs a unique, unpredictable result every

time when it is queried with a different x [86]. This means that

a node in the blockchain network is able to construct a fresh

random challenge solely based on its block proposal without

referring to any designated verifier or third-party initializer.

Meanwhile, it is well-known that with a proper cryptographic

hash function, the search for a preimage (x, nonce) satisfying

the condition H(x‖nonce) ≤ 2L−h in (1) cannot be more

efficient than exhaustively querying the random oracle for

all nonce ∈ [0, 2L]. This leads to a puzzle time complexity

of O(2h) [64]. On the other hand, verifying the puzzle only

requires a single hash query. Therefore, the properties of non-

invertibility, completeness, soundness and freshness are all

satisfied by the PoW puzzle given by Definition 1.

For a given difficulty level D(h) in (1), each single query

to H(·) is an i.i.d. Bernoulli trial with a success probability

Pr (y : H(x‖y) ≤ D(h)) = 2−h. (3)

We adopt the typical assumption of loosely network syn-

chronization for analyzing PoW-based blockchains [23], [86].

Namely, all messages are delivered with bounded delay in

one round. Then, (3) indicates that the frequency for a node

to obtain the puzzle solutions during a certain number of

loosely synchronized rounds is a Bernoulli process. Since the

probability given in (3) is negligible for a sufficiently large h
with cryptographic hash functions H(·), the Bernoulli process

of node i converges to a Poisson process as the time interval

between queries/trails shrinks [54].

To analyze the PoW scheme, let wi in (2) refer to the

number of queries that node i can make to H(·) in a single

round. Then, we can approximate the rate of the Poisson

process for node i’s puzzle solution by λi = wi/2
h [87].

Note that every node in the network is running an independent

puzzle-solving process. Since a combination of N independent

Poisson processes is still a Poisson process, then, the collective

10The collision probability of H(·) is e−Ω(L) and thus negligible [23].



PoW process of a network with N nodes has a rate

λ =

N
∑

i=1

λi =

∑N
i=1 wi

2h
. (4)

The property of the combined Poisson processes in (4) leads

to the probability distribution for leader election in (2). From

a single node’s perspective, the repeated PoW puzzle-solving

processes take the form of a block-proposal competition across

the network. From the perspective of the network, for a given

difficulty level D(h), this puzzle-solving race simulates a

verifiable random function for leader election and guarantees

to follow the distribution in (2). Most importantly, it tolerates

any fraction of the Byzantine nodes in the network.

Nevertheless, the PoW by itself cannot guarantee any of

the principle Byzantine consensus properties as described in

Section II-D. On top of the designed PoW puzzle and the P2P

information diffusion functionality, three external functions

are abstracted in [23] to describe the Nakamoto consensus

protocol from a single node’s perspective. These functions are

1) the chain reading function that receives as input a

blockchain and outputs an interpretation for later use;

2) the content validation function that validates a

blockchain replica and checks the data consistency with

the applications (e.g., Bitcoin) on top of the blockchain;

3) the input contribution function that compares the local

and the received views of the blockchain and adopts the

“best” one following the rule of longest chain.

The input contribution function realizes the puzzle execution

stage and the content validation function realizes the puzzle

verification stage in Table I. Due to the independent Poisson

processes in the block-proposal competition, more than one

node may propose to extend the blockchain using different

blocks with corresponding valid PoW solutions at the same

time. As a result, the nodes may read from the network

multiple valid views of the blockchain and choose different

forks as their “best” local views (see also Figure 5). Theoret-

ically, it has been shown in [88] that deterministic consensus

in permissionless blockchain networks cannot be guaranteed

unless all non-faulty nodes are reachable from one to another

and the number of consensus nodes is known. For this reason,

in [23], [86], [89], Garay et al. propose to capture the prop-

erties of validity, agreement and liveness of the Nakamoto

consensus protocol by the three chain-based properties in

Table II. Then, the PoW-based Nakamoto protocol can be

modeled as a probabilistic Byzantine agreement protocol.

In order to quantify the Byzantine agreement properties for

blockchains, three conditions, i.e., the upper-bounded informa-

tion diffusion delay, a “flat network” with equal and limited

hashrates and the upper-bounded number of Byzantine nodes

are assumed in [23], [86], [89]. It is shown in [23] that the

three properties in Table II are quantified by three parameters,

namely, the collective hashrates of the honest nodes, the

hashrate controlled by the adversaries and the expected block

arrival rate of the network-level Poisson process given in (4).

It has been further proved in [23] that under the condition of

honest majority, the basic properties of validity and agreement

are satisfied by the Nakamoto protocol with overwhelming

Table II
THREE PROPERTIES OF NAKAMOTO PROTOCOLS FOR BLOCKCHAINS

Nakamoto

Protocol-

Specified

Properties

Corresponding

Properties of

Byzantine

Agreement

Explanation in Details

Common-

prefix

property

Agreement

(and

permanent

order)

In the condition of multiple local blockchain views

due to forking, the common-prefix property in-

dicates that after cutting off (pruning) a certain

number of block from the end (header) of the

local chain, an honest node will always obtain a

sub-chain that is a prefix of another honest node’s

local view of the blockchain.

Chain-

quality

property

Validity Among a given length of consequent blocks in

the local blockchain view of an honest node, the

number of blocks that is proposed by Byzantine

nodes (adversaries) is upper-bounded.

Chain-

growth

property

Liveness For any given rounds of block proposals, the

number of blocks appended to the local view of

any honest node is lower-bounded.

probability. Furthermore, the common-prefix property and the

chain-growth property formalize the presumption in [1] that a

transaction is secured when a sufficient length of subsequent

blocks is appended to the chain. In other words, when a

block is a certain number of blocks deep from the end of the

chain, or equivalently, the repeated block-proposal competition

has passed sufficiently many rounds, the transaction data in

that block is non-reversible/persistent and thus guaranteed

to be double-spending proof. It is worth noting that the

studies in [23], [89] provide a generalizable approach for

evaluating the security and the efficiency of the PoX-based

Nakamoto protocols in permissionless blockchains. Based on

the quantitative analysis of the properties in Table II, the same

framework of security evaluation has been adopted by the

studies in consensus protocols using other types of puzzle

design such as Proof of Stakes (PoS) [77], [90].

Due to the open access nature of permissionless

blockchains, the hashrate presented in a practical blockchain

network is generally unstable. As indicated by Figure 7, since

the introduction of the Application Specific Integrated Circuit

(ASIC) for hash acceleration in 2013, the practical PoW-

based blockchain networks, e.g., Bitcoin, have experienced

an explosive increase of the total hashrate with huge fluctua-

tion [91]. Practically, blockchain networks adopt a heuristic,

periodic difficulty-adjustment policy to maintain a roughly

fixed time interval, i.e., λ−1 in (4), between two neighbor

blocks. However, the expected value of λ−1 is usually chosen

in an arbitrary manner and is frequently reduced in favor

of a higher transaction throughput (see Litecoin [92] and

ZCash [44] for example). Following the assumption of partial

synchronization [23], the roughly fixed time interval indeed

implies an upper bound for the information dissemination

latency in the P2P network [93].

With such a consideration in mind, a theoretical study is

provided in [94] between the upper bound of the information

latency and the persistence of the block data in a node’s local

view of the blockchain. Consider a flat network of N nodes

with a maximum block propagation delay of T . It is found

in [94] that for a given fraction of adversary node ρ (0≤ρ<
0.5), the block generation probability for each node should

satisfy the following condition in order to ensure the property
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Figure 7. Evolution of (a) the total hash rate and (b) the PoW puzzle difficulty
in the Bitcoin network over time. Data source: https://www.blockchain.com.

of data persistence (Theorem 1.1 in [94]):

Prg
i ≤

1

Tρ
∑N

i=1 wi

, (5)

where Prg
i can be calculated based on (3) and a given hashrate.

Furthermore, the block interval rules the trade-off between

security and efficiency. The formal refers to the degree of

fulfillment (i.e., the probabilistic consistency) of the Byzantine

agreement properties, whereas the latter refers to the trans-

action throughput, which can be measured in the number of

confirmed transactions per second. In [45], [93], examination

on the block propagation delay T in (5) shows that a safe

upper bound on T is jointly determined by the block size, the

network scale measured in hop counts, and the average round-

trip time of the links. The empirical study in [45] reveals that

for small-size blocks, e.g., less than 20kB for Bitcoin, the

round-trip delay is the dominant factor of the block propa-

gation delay. Otherwise, transaction validation time becomes

the major factor of the block propagation delay, which grows

linearly with respect to the size of a block, e.g., 80ms/kB

for Bitcoin. In [95], an implicit metric to capture the impact

of network scale on the block propagation delay is adopted.

Therein, the ratio between the block size and the propagation

time required to reach a certain percentage of the nodes in the

network is measured for the Bitcoin network. The experiments

show that in the Bitcoin network with 55kb/s propagation rate

for 90% of the nodes, the block interval should not be smaller

than 12s, which leads to a peak transaction throughput of

26TX/s for 250Byte transactions.

Furthermore, the studies in [96], [97] also consider the im-

pact of the propagation delay on the incidence of abandoning

a proposed block with valid PoW solution. More specifically,

finding a valid puzzle solution does not necessarily mean that

the proposed block will be finally accepted by the network.

Due to the propagation delay, a blockchain fork (see Figure 5)

can only be adopted as the canonical blockchain state when

it is first disseminated across the network. By considering

both the round-trip delay and the block verification delay,

the average block propagation delay across a P2P network

is modeled as a function of the block size s in [97]:

T (s) = Tp(s) + Tv(s) =
s

aC
+ bs, (6)

where a is a network scale-related parameter, C is the av-

erage effective channel capacity of each link [98] and b is

a coefficient determined by both the network scale and the

average verification speed of each node (cf. [45]). Based on

(6), the probability for the network to abandon/orphan a valid

block proposal of size s due to the delay of block diffusion is

modeled as follows [96], [97]:

PrOrphan(s) = 1 − e−λT (s), (7)

where λ is the expected block arrival rate.

From a user’s perspective, it is insufficient to know only

the network-level probability of block orphaning due to the

latency. Alternatively, it is of more interest to determine the

safe time interval between locally observing on the chain a

transaction and confirming it. With this in mind, the study

in [94] considers a scenario where the adversary gets addi-

tional computation time by delaying the block propagation

with a certain number of rounds ∆. Based on the analysis

of the common-prefix property [23], a new metric, i.e., K-

consistency is proposed in [94] to examine whether any two

honest nodes are able to agree on the blockchain state that is

at least K blocks deep from the end of the chain. Let α and β
denote the probabilities that an honest node and the attackers

can propose a valid block within a round, respectively. The

analytical study in [94] (cf. [93, Lemma 8]) shows that the

required waiting time T is jointly determined by α, β, ∆ and

the parameter determining the searching space of the hash

function, i.e., L in Definition 1. More specifically, as long as

the following condition is satisfied with an arbitrarily small

constant δ > 0 (see [94, Theorem 1.2])

α(1 − (2∆ + 2)α) ≥ (1 + δ)β, (8)

and K>K0(L)=c log(L) for some constant c, the Nakamoto

protocol satisfies the property of K-consistency (except with

negligible probability in K). However, the closed-form thresh-

old K0(L) for K-consistency is not provided in [94].

C. Proof of Concepts Attached to Useful Resources

Under the framework of Nakamoto protocol, a number of

alternative PoX schemes have been proposed to replace the

original PoW scheme in permissionless blockchain networks.

Generally, these PoX schemes aim at two major designing

goals, i.e., to incentivize useful resource provision, e.g., [36],

[70], [84], [99], [100] and to improve the performance, e.g.,

in terms of security, fairness and eco-friendliness [83], [101],

[102] of the blockchain networks. Starting from this subsec-

tion, we will focus on the principles of puzzle design discussed

in Section III-A and provide a close examination on different

PoX schemes in the literature.

With the purpose of useful resource provision, the idea

of “Proof of Useful Resources” (PoUS) has been proposed

to tackle the resource wasting problem of PoW. Instead of

enforcing the consumption of computational cycles for merely

hash queries, a number of studies are devoted to the design

of puzzles that are attached to useful work. An early attempt,

i.e., Primecoin [103], proposed to replace the PoW puzzle in

(1) by the puzzle of searching three types of prime number



chains, i.e., the Cunningham chain of the first/second kind

or the bi-twin chain [104]. However, the verification stage of

Primecoin puzzle is based on classical Fermat test of base two

(pseudoprime) [103], hence violates the principle of soundness

in non-interactive ZKP. Meanwhile, since the induced solution

arrival does not follow the i.i.d. Bernoulli model in (3), the

Primecoin puzzle does not simulate the random distribution

for leader selection as required by (2).

In [105], a similar scheme, i.e., the proof of exercise is

proposed to replace the preimage searching problem in PoW

with the useful “exercise” of matrix product problems. The

scheme uses a pool of task proposals to replace the PoW-based

puzzle solving processes by the computation tasks offered by

non-authenticated clients. Each consensus node needs to bid

for a specific task to determine its puzzle. For this reason,

the puzzle solution-generating scheme behaves more like a

Computation as a Service (CaaS) platform. Since the matrix

problems in the task pool may present different complexity

levels, the puzzle competition does not fully simulate on the

network level the random distribution in (2). Also, the solution

verification can only be done probabilistically due to the

lack of O(n) verification schemes. Therefore, the proposed

scheme in [105] suffers from the same problems as in the

Primecoin [103].

In [84], a new puzzle framework, i.e., useful Proof of Work

(uPoW) is designed to replace the primitive PoW puzzle in

(1) with a specific set of problems satisfying not only the

properties of completeness, soundness and non-invertibility

(hardness), but also the additional requirement of usefulness.

Here, the usefulness is implied in the execution stage of the

puzzle (cf. Table I). Formally, by assuming completeness and

soundness, the properties of usefulness can be defined as

follows (cf. [84, Definition 1]):

Definition 2 (Usefulness). Suppose that a challenge cx and

an accompanying puzzle solution (proof) s are generated from

an input string x. If there exists an algorithm Recon(cx, s)
such that for a target function F (·) its output satisfies

Recon(cx, s) =F (x), the challenge is known to be useful for

delegating the computation of F (x).

The study in [84] proposes to replace preimage searching

in (1) with a family of one-way functions satisfying the

property of fine-grained hardness [106] for uPoW puzzle

design. Namely, the PoW puzzle is proposed to be replaced by

the problem of known worst-case-to-average-case complexity

reduction. A special case of uPoW puzzles based on the

problem of k-Orthogonal Vectors (k-OV) is discussed. In brief,

the solution to k-OV performs an exhaustive search over k
sets of identical-dimension vectors and determines whether

for each set there exists a vector such that these k vectors

are k-orthogonal. In order to construct non-interactive proofs,

uPoW in [84] employs the hash function H(·) as a random

oracle. Simply put, given the number of vectors in each set,

non-interactive uPoW treats the elements of each vector as the

random coefficients of polynomials with the identical order.

uPoW initializes the first element of each vector, i.e., the

lowest order coefficient with a publicly known input string x
and then uses it as the input to H(·) for generating the next-

order coefficient. The output of H(x) will then be iteratively

used as the input for generating the next-order coefficient.

This can be considered as a typical example of applying the

Fiat-Shamir scheme11 to construct non-interactive PoW out of

interactive ZKP schemes. With such an approach, uPoW does

not need to explicitly define the vector sets. It also guarantees

that the solutions of k-OV found by each prover follow a

Bernoulli distribution. Therefore, the uPoW scheme fits well

in the existing Nakamoto protocols by simulating a provable

random function. As stated in [84], besides k-OV, uPoW is

compatible with computation delegation for other problems

such as 3SUM [106], all-pairs shortest path [106], and any

problem that reduces to them12.

Schemes that are similar to uPoW can also be found

in [100]. In [100], the problem of untrusted computational

work assignment is addressed in a Trusted Execution Environ-

ment (TEE). The TEE can be constructed using Intel Software

Guard Extensions (SGX), which is a set of new instructions

available on certain Intel CPUs to protect user-level codes

from attacks by hardware and other processes on the same

host machine. In the permissionless network, the clients supply

their workloads in the form of tasks that can be run in an SGX-

protected enclave (i.e., protected address space). The study

in [100] exploits the truthfulness-guaranteeing feature of the

Intel attestation service [108] in the SGX-protected platform

to verify and measure the software running in an enclave.

With the designed puzzle, the work of each consensus node

is metered on a per-instruction basis, and the SGX enclave

randomly determines whether the work results in a valid block

proof by treating each instruction as a Bernoulli trial. Based on

the TEE, each executed useful-work instruction is analogous to

one hash query in the primitive PoW, and the enclave module

works as a trusted random oracle.

Apart from delegation of useful computation, PoX can

also be designed to incentivize distributed storage provision.

For example, Permacoin [109] proposes a scheme of Proof

of Retrievability (PoR) in order to distributively store an

extremely large size of data provided by an authoritative file

dealer. The file dealer divides the data into a number of

sequential segments and publishes the corresponding Merkle

root using the segments as the leaves. A consensus node

uses its public key and the hash function to select a random

group of segment indices for local storage. For each locally

stored segment, the node also stores the corresponding Merkle

proof derived from querying the Merkle tree. The challenge-

proof pair is generated based on a subset of the locally stored

segments and the corresponding Merkle proof. To ensure the

non-interactiveness and freshness of the puzzle (cf. interactive

PoR in [110]), the node needs a publicly known and non-

precomputable puzzle ID to seed the process of segment se-

lection called “scratch-off”. To help the readers understand the

puzzle generation process, we present a simplified execution

stage of PoR as follows (see also [109, Figure 1]):

• The execution stage of PoR: suppose a node is given

11The Fiat-Shamir scheme takes a similar form to the process of digital
signature verification, see [107] for the definition.

12These problems should be worst-case hard for some time bound and can
be represented by low-degree polynomials.
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Figure 8. Illustration of Merkle proof: for segment U1, the Merkle proof is
obtained by climbing up the tree until the root (as the nodes in red).

the key pair (sk, pk), the puzzle ID idpuz , the vector of

locally stored segment indices v, the required number of

Merkle proofs k, the vectors of all the file segments U

and the corresponding Merkle proof vector π. The ran-

dom IDs of the local segments for challenge generation

can be determined by:

∀1≤j≤k : rj =v (H(idpuz‖pk‖j‖nonce) mod |v|) , (9)

where nonce is a random value chosen by the node. For

each segment U(v(rj)) in the challenge, the proof is in

the form of (pki, nonce,U(v(rj)), π(v(rj ))).

The execution stage of PoR in [109] is composed of a fixed

number of queries to the random oracle H. Thereby, although

PoR satisfies the principle properties of non-interactive ZKP,

it does not simulate the random leader election process. In

this sense, the proposed PoR scheme may not be able to

achieve the claimed goal of “repurposing PoW” in [109].

Instead, it is more similar to the existing systems such as

Stoj [111], Sia [112] and TorCoin [99], where PoX is only used

to audit the execution of the smart contracts or script-based

transactions instead of facilitating the consensus mechanism.

Further improvement to PoR can be found in the proposals

of KopperCoin [70] and Filecoin [36]. In [70], KopperCoin

adopts the same framework of distributed storage for a single

file as in Permacoin [109]. Compared with Permacoin, the

main improvement of the puzzle design in KopperCoin is to

simulate the random leader election process for block proposal.

KopperCoin introduces a bitwise XOR-based distance metric

between the index of a locally stored data segment and a

random, publicly known challenge c. A node needs to provide

the valid Merkle proof (PoR) of a segment, of which the index

(denoted by j) should satisfy the following condition:

H(x) · 2|j⊕c| ≤ D(h), (10)

where the block payload x and the difficulty threshold D(h)
are defined in the same way as in Definition 1. Compared

with (1), the solution searching for (10) is now performed

within the range of the locally-stored segment indices. The

more segments a node offers to store, the better chance the

node has to find a solution to (10). Again, the generation of

the public, unpredictable random challenge c can be derived

based on hashing the header of the most recent block. This

approach presents another example of applying the Fiat-

Shamir transformation to realize non-interactiveness [107].

In the Filecoin network [36], the concept of “spacetime” is

introduced to allow metering the data stored in the network

with an expiry time. Filecoin aims to provide the functionality
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Figure 9. Illustration of the PoST scheme based on iterative PoR over time.

of recycling and re-allocating the storage on the provider

(miner) side as well as easing the files retrieval process on

the client side. Like in the proof-of-exercise scheme, File-

coin designs the market for storage and retrieval of multiple

files based on smart contracts. A new puzzle, i.e., Proof of

SpaceTime (PoST) [83], is adopted based on the intuition of

generating a PoR sequence during a certain period to prove

the holding time of useful storage. As illustrated by Figure 9,

the major difference of PoST from PoR lies in the repeated

execution phases for challenge updating without rerunning the

initialization stage. Namely, a consensus node is required by

the Filecoin network to submit PoR (e.g., in a similar way to

Permacoin [109]) every time when the blockchain is extended

by a certain number of blocks. Instead of simulating random

leader election based on adjustable difficulty [70], the Filecoin

network uses the following mechanism to determine whether

a node i is elected for block proposal:

1

2L
H(t|rand(t)) ≤

wi
∑

j∈N wj
, (11)

where t is the index of consensus round (i.e., block index), L is

the output string length of the hash function (see (1)), rand(·)
is an assumed random oracle, and wi represents the storage

power of node i (see also (2)). It is worth noting that the

evaluation of wi in (11) can only be done through PoST. Thus,

the Filecoin network admits a double-challenge scheme, where

the leader election is performed based on a second challenge,

i.e., (11). The nodes with the better quality of PoST proofs

(storage power) are more likely to win the second challenge.

Under the framework of double challenges, a similar approach

of puzzle design can also be found in the proof of space-based

cryptocurrency proposal known as SpaceMint [83], [101].

D. Proof of Concepts for Performance Improvement

Alternative PoX schemes have also been designed with the

emphasis on improving the performance of PoW in the as-

pects such as security, fairness and sustainability. To alleviate

the problem of computation power centralization due to the

massive adoption of ASICs, memory-hard PoW, also known

as the Proof of Memory (PoM), is adopted by ZCash [44] and

Ethereum [35] networks. In the ZCash network, the Equihash

scheme [81] is adopted based on the generalized birthday

problem [113]. The study in [81] has pointed out that any

identified NP-complete problem can be the natural candidate

for the PoX puzzle due to their proved hardness, as long as

the solution verification can be completed in polynomial time.

However, a puzzle design only satisfying the hardness require-

ment may not be able to combat the botnet or ASIC-based

manipulation of hashrate. Thus, a suitable PoX is expected to



be “optimization-free” and “parallelism-constraint”. Namely,

the solution searching process cannot be sped up by using

alternative algorithms or through parallelization.

An ideal approach of imposing parallelism constraint is to

ensure that the PoW scheme is inherently sequential. However,

an inherently sequential NP problem that is known to be

verified in short time is yet to be found [81]. Therefore,

the study in [81] adopts an alternative approach by imposing

enormous memory bandwidth to the parallel solution of the

puzzle. According to [113], the generalized k-dimensional

birthday problem is to find k strings of n bits from k sets of

strings, such that their XOR operation leads to zero. Equihash

employs the hash function H(·) to randomly generate the k
strings using the block payload data x and a nonce (as in

(9)), such that both the XOR-based birthday problem solution

and a PoW preimage of a given difficulty are found. It is

shown in [113] that the best solution algorithm to this problem

presents O(2n/k) complexity in both time and space and thus

is memory-intensive. More importantly, for a k-dimensional

problem, a discounting factor 1/q in memory usage leads to

O(qk/2) times more queries to the hash function. Due to the

physical memory bandwidth limit, the computation advantage

of parallelization is limited. These properties guarantee the

ASIC-resistance of Equihash.

With the same purpose of preventing the “super-linear”

profit through hashrate accumulation, Ethereum currently

adopts a different puzzle design known as Ethash for ASIC

resistance [114]. Ethash requires the consensus nodes to search

for the PoW puzzle solution based on a big pseudorandom

dataset, which increases linearly over time. The dataset is

organized as the adjacency matrix of a DAG, where each

vertex represents a randomly generated data field of 128

bits. In the execution stage of Ethash, the node starts a one-

time search of the solution with a hash query, and uses the

concatenation of the block payload and a nonce to seed the

hash function for locating a random vertex in the DAG. Then,

the search is completed in a fixed-iteration loop of queries to

the hash function, for which the output of the last iteration, i.e.,

the data field of the last vertex in the path is used as the input

to determine the position of the next vertex in the DAG. The

final output of the loop is used to check against the preimage

condition as in (1). As illustrated in Figure 10, the designed

puzzle of Ethash makes the searching algorithm inherently

sequential. With Ethash, the rate of data field fetching from the

DAG is limited by the memory bandwidth. Then, paralleling

the hash queries with ASICs cannot lead to much performance

improvement in a single search of the puzzle solution.

Ethash [114] only makes the puzzle solution partially se-

quential within a single attempt of preimage search. Therefore,

Ethash still faces the problem of PoW outsourcing since a

consensus node can divide the puzzle solution search into

multiple sub-problems and outsource them to different “mining

workers” (i.e., puzzle solvers). Such a problem is also known

as the formation of mining coalition (pool) [61] and may result

in a serious problem of consensus manipulation by a handful of

full nodes [4]. In [82], a nonoutsourceable “scratch-off puzzle”

is proposed to disincentivize the tendency of mining task

outsourcing. Intuitively, when a node effectively outsources

Figure 10. One query to the random oracle in Ethash for a given nonce
based on the iterative mixed hash operation for vertex searching.

its puzzle-solving work to some mining machines, we call

the puzzle nonoutsourceable if these miners can steal the

block proposal reward of that node without producing any

evidence to implicate themselves. The study in [82] employs

Merkle proofs for puzzle design, which can be considered as

a generalization of the PoR [109]. In [82], a Merkle tree is

created based on a number of random strings. To generate a

fresh puzzle, a node queries the hash function for the first

time with a random nonce and the constructed Merkle root.

The output of this query is used to select a random subset of

distinct leaves on the Merkle tree. Then, the concatenation of

the Merkle proofs for each leaf in subset and the same nonce

is used as the input to the second query of the hash function.

The output is used to compare with the preimage condition

as given in (1). If a solution (nonce) is found, the payload

of the proposed block is used as the input of the third query

to the hash function, and the output is used to select another

subset of random leaves on the Merkle tree. The corresponding

Merkle proofs are treated as the “signature” of the payload of

the proposed block. With such puzzle design, mining workers

only need to know a sufficiently large fraction of the Merkle

tree leaves to “steal” the reward by replacing the Merkle proof-

based signature with their own proofs.

It is worth noting that the nonoutsourceable puzzle in [82]

is generated in such a way to make the preimage search for (1)

independent of the payload of the proposed block, i.e., using

the randomly generated Merkle tree. Then, a mining worker

is able to replace the original payload including the public

keys from the outsourcer by its own payload without being

detected. A similar proposal of nonoutsourceable puzzle can be

found in [115], where a nonoutsourceable puzzle is designed

based on two-fold puzzle. Namely, an inner puzzle is solved

as a typical PoW puzzle, whose solution is used as the input

of an additional PoW puzzle known as the outer puzzle. To

prevent outsourcing the work load, a mining worker’s signature

is required for the inner puzzle solution to be used by the outer

puzzle. However, it is pointed out in [115] that such design

can only be considered heuristic and is not guaranteed to have

the formal properties of weak outsourceability [82].

Apart from the manipulation-resistant puzzles, other puzzles

are proposed in [101], [102] with the emphasis on eco-

friendliness. Therein, the major goal is to reduce/remove the

repeated hash queries to curb energy consumption due to hash

queries. In [101], the SpaceMint network is proposed based

on Proof of SPace (PoSP) [116]. Similar to PoR [109], PoSP
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requires the consensus nodes to provide non-interactive proofs

of storage dedication during puzzle solution searching. The

major difference from PoR lies in that PoSP does not need

the prover to store useful data (from the verifiers), and the

proof is based on a large volume of random data stored on

the provers’ hard drive. As in Ethash [114], the committed

space is also organized as a DAG, where the value of each

vertex is determined based on the hash of its parent vertices

(see Figure 11). A consensus node is required to use the hash

of an earlier block as the seed to sample a random set of vertex

values. The set of the vertex values forms the challenge of the

node’s local PoSP puzzle. If the node is able to provide the

Merkle proofs for all the vertices in the challenge set, namely,

the sibling vertices that lie on the path between each challenge

vertex and the end vertex in the DAG with no outgoing edge,

the proposed block is considered a valid block candidate.

SpaceMint also proposes to measure the quality of a set of

Merkle proofs based on the hash value of the concatenated

vertex in a Merkle tree. Then, the blockchain network is able

to select the block with the best quality of proof from the

candidate blocks when a fork occurs.

The study in [102] proposes to introduce a human-in-

the-loop puzzle, i.e., the Proof of Human-work (PoH) into

the Nakamoto protocol. The designing goal of PoH is to

guarantee the properties of eco-friendliness, usefulness and

centralization-resistance at the same time. It is proposed

in [102] that PoH should be able to provide non-interactive,

computer-generated puzzles which are moderately hard for a

human but hard for a computer to solve, even for the computer

that generates the puzzles. PoH is inspired by the widely-

adopted systems of Completely Automated Public Turing-

Test to tell Computers and Humans Apart (CAPTCHA) [117].

Traditional CAPTCHA systems usually take human-efficient

input (e.g., images) with a known solution and generate the

puzzle based on distortion to the solution. For PoH, a universal

sampler [118] is assumed to be available to generate a random

CAPTCHA instance for the consensus node such that the

puzzle-generating machine is not able to directly obtain the

puzzle solution. Then, the node (i.e., miner) needs human work

to obtain the corresponding solution of the CAPTCHA puzzle.

A two-challenge puzzle design is adopted and the solution of

the CAPTCHA puzzle is used as the input of a small PoW

puzzle as defined in (1). A complete PoH solution includes a

CAPTCHA solution and a nonce such that they together satisfy

the preimage condition in (1). PoH implicitly assumes that

some Artificial Intelligence (AI) problems (e.g., recognition of

distorted audios or images) are human-efficient but difficult for

machines. Then, by selecting a proper underlying CAPTCHA

scheme, it is possible to extend the PoH with a variety of

meaningful human activities ranging from that educational

purposes to a number of socially beneficial programs [118].

For a progressive summary, we summarize in Table III the

major properties of the PoX schemes reviewed in this section.

IV. STRATEGIES OF RATIONAL NODES IN THE

FRAMEWORK OF NAKAMOTO CONSENSUS PROTOCOLS

In this section, we review the studies on the incentive com-

patibility of the Nakamoto consensus protocols. By adopting

the basic assumption on rationality of the consensus nodes

(i.e., block miners), we provide a comprehensive survey on

the node strategies in the consensus process for block mining.

It is worth noting that most of the analysis in the literature

about the consensus nodes’ mining strategies are presented in

the context of the PoW-based Bitcoin network. Nevertheless,

they can be readily extended to other PoX schemes under the

framework of Nakamoto protocols. In particular, we focus on

the game theoretic formulation of resource allocation during

the mining process, and then explore how miners can exploit

the vulnerability of the incentive mechanism of the Nakamoto

protocols in permissionless blockchain networks.

A. Incentive Compatibility of Nakamoto Protocols

For Nakamoto protocols, monetary incentive plays the key

role to ensure that most of the consensus nodes/miners follow

the rules of blockchain state transition during the puzzle

solution competition. In permissionless blockchain networks,

the incentive mechanism is built upon the embedded digital

token issuing and transferring schemes. In a typical PoW-

based blockchain network, the leader/winner in the block

proposal competition not only collects transaction fees from

the approved transactions in the new block, but also gets token

issuing reward, e.g., the “coinbase reward” in Bitcoin, for

expanding the blockchain with the new block. For this reason,

the puzzle competition process is compared to the process of

“gold mining”, since by casting resources into the competition,

the nodes expect to receive monetary rewards carried by the

tokens. As a result, the consensus participant nodes are better

known as block “miners” to the public.

In [65] the consensus in blockchain networks is divided

into three folds, namely, the consensus about the rules, e.g.,

about transaction dissemination and validation, the universality

of the blockchain state and financial value that the digital

token carries. Then, the studies on the Nakamoto protocol’s

incentive compatibility can also be categorized according to

these three aspects. Since the introduction of ASIC devices and

pool mining for PoW-based blockchain networks, concerns

have been raised about the nodes’ incentive to fully abide

by the protocol [60], [61], [65], [119]. Due to the explosion

of network-level hashrates (see Figure 7(a)), most of the

practical blockchain networks, i.e., cryptocurrency networks,

are nowadays dominated by the proxies of mining pools [66]

(see Figure 12). An individual node in a mining pool is known



Table III
COMPARISON OF DIFFERENT POX SCHEMES FOR PERMISSIONLESS BLOCKCHAINS

Puzzle Name
Origin of Hardness

(One-way Function)

Designing

Goal

Implementation

Description

ZKP

Properties

Simulation

of Random

Function

Features of

Puzzle Design

Network

Realization

Primitive proof of

work [23], [86]
Partial preimage search

via exhaustive queries to

the random oracle

Sybil-proof Repeated queries to

cryptographic hash

function

Yes Yes Single challenge
Bitcoin [1],

Litecoin [92]

Proof of exercise

[105]
Matrix product Computation

delegation

Probabilistic verifica-

tion

N/A No Single challenge N/A

Useful proof of

work [84]
K-orthogonal vector,

3SUM, all-pairs shortest

path, etc.

Computation

delegation

Non-interactiveness

via Fiat-Shamir

transformation

Yes Yes Single challenge with

sequential hash queries

N/A

Resource-efficient

mining [100]
N/A Computation

delegation

Guaranteed by TEE Yes Yes Trusted random oracle

implemented by dedi-

cated hardware

N/A

Proof of

retrievability [110]
Merkle proofs of file

fragments in the Merkle

tree

Distributed

storage

Non-interactiveness

via Fiat-Shamir

transformation and

random Merkle

proofs

Yes Conditional Two-stage challenge
Permacoin [109],

KopperCoin [70]

Proof of space

-time [36]

The repeated proof of

retrievability over time
Decentralized

storage market

Repeated PoR Yes Conditional Two-stage challenge

and repeated PoR over

time

Filecoin [36]

Equihash [81] The generalized birthday

problem

ASIC

resistance

Time-space complex-

ity trade-off in proof

generation [81]

Yes Yes Memory-hard ZCash [44]

Ethash [114] Random path searching a

random DAG

ASIC

resistance

Repeated queries to

cryptographic hash

function

Yes Yes Sequential, memory-

hard puzzle

Ethereum [35]

Nnonoutsourceable

scratch-off puzzle

[82]
Generalization of proof

of retrievability

Centralization

resistance

Random Merkle proof Yes Yes Two-stage challenge N/A

Proof of space

[116]
Merkle proofs of a vertex

subset in a random DAG

Energy

efficiency

Random Merkle proof Yes Yes Two-stage challenge

and measurement of

proof quality

SpaceMint [116]

Proof of human

work [102]
Radom CAPTCHA puz-

zle requiring human ef-

fort

Useful work

and energy

efficiency

CAPTCHA and PoW Yes Yes Human in the loop N/A

as a mining worker, since it no longer performs the tasks of

transaction validation or propagation and does not even keep

any blockchain data. On the contrary, only the proxy of the

pool, i.e., the pool server/task operator maintains the replica

of the blockchain. The pool server divides the exhaustive

preimage search for PoW solution into a number of sub-

tasks and outsources them to the mining workers13. In this

sense, only the pool server can be considered as a node in the

blockchain network. Studies have shown that joining a mining

pool has become the more plausible strategy than working as

an individual consensus node, since such a strategy reduces the

income variance and secures stable profits [4], [61]. However,

this leads to the formation of mining-pool Cartel [61] and is

against the design goal of Nakamoto consensus in [1], that

“the network is robust in its unstructured simplicity”.

A further study in [58] reveals that under the current

framework of Nakamoto protocols, no incentive is provided for

nodes to propagate the transactions that they are aware of. The

study considers the situation when transaction fees dominate

the block rewards [121]. The analysis in [58] models the

paths of transaction dissemination as a forest of d-ary directed

trees, where each transaction issuer considers its peer nodes

13According to the Stratum mining protocol [120], the pool server only
needs to send a miner the Merkle root of the transactions in the block (see
Figure 2) and a difficulty level to complete the puzzle solving sub-task.

AntPool: 17.7%

BTC.com: 16.5%

ViaBTC: 14.5%
BTC.TOP: 11.9%

SlushPool: 10.1%

F2Pool: 6.4%

Others: 22.9%

(a)

Ethermine: 25%

f2pool2: 25%

Nanopool: 12%

miningpoolhub1: 10%

ethfans.org2: 9%

DwarfPool1: 4%

Others: 15%

(b)

Figure 12. Hash rates controlled by mining pools in (a) Bitcoin (data source:
https://blockchain.info) and (b) Ethereum (data source: https://etherscan.io).

as the tree roots and the nodes on the far end of the network

as the leafs. During transaction dissemination, a consensus

node can add any number of pseudo-identities (a.k.a., fake

identities) before selectively relaying the transaction to any

of its neighbors. It is shown that a consensus node tends to

not broadcast any transaction that offers a fee. By doing so,

it reduces the number of nodes that are aware of the trans-

action and hence the competition of mining that transaction.

An improved protocol is proposed in [58] by introducing

a broadcasting incentive mechanism. More specifically, the

proposed mechanism requires that each relaying node in the

path of transaction propagation shares a uniform portion of

reward with the root (i.e., mining) node, when the height of

the relaying node is small than a predetermined threshold in

the directed tree. The analysis of the new protocol is based



on the formulation of a normal-form game [122], and thus

the equilibrium strategy of each node can be obtained through

iterative removal of dominated strategies. The designed incen-

tive mechanism is shown to guarantee that only the non-Sybil

and information propagating strategies survive in the iterated

removal of weakly dominated strategies, as long as the miners

are connected to sufficient many peers.

Similar studies to enforce honest block/transaction propa-

gation can also be found in [62], [123]. The study in [62]

casts the problem of incentivizing block propagation into the

framework of routing in k-connected networks, where each

rational node can freely choose between relaying and mining

(or both). A protocol of transaction fee-sharing is designed

therein to guarantee that the rational strategy of honest nodes

in the network is to propagate the received transactions. It

is required that a mining node shares the reward of a new

transaction with the relaying nodes in one path between itself

and the client which issues that transaction. According to [58],

creating pseudo-identities does not increase the connectivity

of a node. From such an observation, it is proved in [62] that

assigning the propagation reward of each relaying node as a

decreasing function of the hop count guarantees transaction

propagation, as long as the computing power (or other re-

sources for mining) controlled by each node does not dominate

the network. Comparatively, the study in [123] ensures that

the payment made to the transaction-relaying nodes cannot be

denied by the miners of the new blocks. With the proposed

propagation protocol in [123], each intermediate hop adds

its own signature to the transaction before sending it to the

next hop. While working on their own PoW-puzzle solution,

the relaying nodes freely charge their descendants at least a

minimum fee for propagation. The miner whose block finally

gets confirmed by the blockchain will pay for the propagation

fees to one selected path of nodes. As in [58] the process

of transaction propagation and relaying price competition is

modeled as a non-cooperative game in [123]. It is proved that

with the proposed propagation protocol based on the chain of

signatures, a rational miner’s equilibrium strategy is to always

choose the shortest path, and a rational intermediate node’

equilibrium strategy is to always charge its descendants the

minimum fees for relaying transactions.

When block creation reward dominates the mining reward,

incentive incompatibility may appear in different forms. Intu-

itively, it is plausible for a rational miner to pack up a proper

number of transactions with decent fees in the new block

for profit maximization. However, empty blocks with only

coinbase transaction or blocks with a tiny number of trans-

actions can be frequently observed in the practical blockchain

networks14. An informal game theoretic analysis in [124]

indicates that the consensus nodes tend to ignore the received

blocks of large size in a flat network and relay the smaller

competing blocks instead. The reason is that large blocks result

in longer delay due to transaction validation, hence increasing

the probability of orphaning any blocks that are mined based

on them. Although mining empty block does not violate the

current Nakamoto protocol, it results in the same situation as a

14See Blocks #492972 in Bitcoin and #3908809 in Ethereum for examples.

Distributed Denial of Service (DDoS) attack [125] by blocking

the confirmation of normal transactions.

Furthermore, the statistical studies in [126], [127] have

shown that the consensus nodes behave rationally and are

prone to prioritize the transactions with higher transaction fees

during block packing. However, when the coinbase reward

dominates the block mining reward, the miners are yet not

incentivized to enforce strictly positive fees [127]. In the case

study of Bitcoin network, extra delays for the small-value

transactions are identified ranging from 20 minutes [127] to

as long as 30 days [126]. Also, it is observed in [127] that

most of the lightweight nodes still set an arbitrary transaction

fee in the real-world scenarios. It is unclear whether the

miners or the transaction issuers adopt best-response strategies

systematically. The study in [128] simplifies the consensus

process as a supply game subject to the trade of a specific

type of physical goods. In the considered scenario, the miners

essentially become the follower players in a two-level hier-

archical/Stackelberg game15 led by the blockchain network,

which is assumed to be able to set the transaction prices.

Then, they are expected to have an incentive for including all

transactions if there exists no block-size limit. On the other

hand, it is pointed out in [98] that, since the block orphaning

probability exponentially grows with the block size, a healthy

transaction fee market does not exist for unlimited block size

due to the physical constraint of link capacity in the network.

Finally, it is worth noting that most of the existing studies

are based on the presumption that the tokens carried by

a blockchain have monetary value and their exchange rate

volatility is small. An optimistic prediction is provided in [59]

based on an assumption excluding any state variables on

the user sider except the belief in “proper functioning of a

cryptocurrency”. In the absence of investors and when the

blockchain is used only for the purpose of remittance, it is

shown in [59] that the tokens of a blockchain network admit a

unique equilibrium exchange rate in each period of the belief

evolution. Conditioned on the survival of a cryptocurrency, the

equilibrium state depends on the excess in users’ valuation

of the blockchain over the other payment options as well as

the supply of the tokens in the market. Together with the

Stackelberg game-based interpretation in [128], it is reasonable

to consider that the equilibrium price of a blockchain token

is determined by the demand-supply relation in the market. It

is worth noting that the data security is only guaranteed by

sufficient PoW computation power in the blockchain network.

Currently, except for a few studies such as [129], it is generally

unclear how the impact of security issues is reflected in the

users’ valuation of the blockchain. As a result, whether the

security requirement of the Nakamoto protocol is compatible

with the market clearing price remains an open question.

B. Resource Investment and Transaction Selection for Mining

under Nakamoto Protocols

According to (2), an honest consensus node has to invest in

the mining resources, e.g., hashrates, disk space, etc, to win

15A Stackelberg game is characterized by the sequential play of leaders and
followers, where the leaders may expect better equilibrium payoffs [122].



the puzzle solution competition under Nakamoto consensus

protocols. Intuitively, the more resources a miner casts into

the network, the higher chance the miner has to win the

puzzle competition and obtain the mining reward. However,

the success is not guaranteed because this also depends on

the mining resources of other miners. Since mining resources

are usually expensive, how to properly invest in the mining

resources to maximize the profit is a big concern of the miners.

The study in [130] abstracts the mining investment in the

Bitcoin network as the energy consumption cost. It is assumed

that N active miners in the network are competing in the “all-

pay contest” for block-mining rewards. The cost of presenting

a unit mining resource by each miner may be different, e.g.,

with different electricity prices in different areas. The miners

determine how much to invest in mining resources (hashrates)

such that the expected profit is maximized. This forms a non-

cooperative game among the miners. Analysis of the game’s

unique Nash equilibrium in [130] shows that the decision of

a miner to participate in the mining process or not solely

depends on its individual mining cost, as long as the block

reward is positive. Meanwhile, the structure of the formulated

mining game prevents the emergence of a monopolistic mining

activity. Namely, it is guaranteed that at least two miners will

remain active in the game with positive expected profits.

By (6) and (7), even if a miner succeeds in the puzzle

solution competition, it is still possible for the proposed block

to get orphaned due to the propagation delay. For ease of

exposition, we can assume that all transactions in a block

set the same amount of transactions fee F . Let R denote the

fixed reward for block generation and m denote the number of

transactions in the block. Then, the revenue to mine this block

is R + mF . Apparently, a rational miner expects to include

as many as possible transactions in a block to maximize the

received reward. However, due to the risk of block orphaning,

a miner also has to carefully balance the tradeoff between

the mining reward and the risk of block orphaning. In [98],

the author proposes a mining profit model by assuming the

propagation delay of a block to follow a Poisson distribution.

Thus, the orphaning probability can be approximated by (7).

Let η denote the monetary cost per hash query and ψ denote

the probability for the miner being the leader (see also (3)).

Then, for an average block arrival duration T and block

propagation time τ , a miner’s profit can be modeled as follows:

U = (R + F )ψe−
τ
T − ηhT. (12)

The profit model in (12) is capable of reflecting the impact of

miners’ strategies in both resource investment and transaction

selection. Therefore, this model is especially appropriate for

game-theoretic formulation of mining resource management

problems. Recently, (12) and its variation have been adopted

to construct the payoff function of miners by a series of

studies, which propose to use different game-based models,

e.g., evolutionary game [97], hierarchical game [131] and

auctions [132], to capture the rational behaviors of individual

miners in different network setups.

In [133], an alternative model of winning probability is

proposed to explicitly capture the influence of the adversary

miners’ strategy of block-size selection. We denote si as

block size of miner i in a blockchain network and wi as its

computational power. Then, the block winning probability of

miner i can be expressed by [133]:

Prwin
i =

wi

T

[

∏

j 6=i

(

e−
wj(t+τ(si)−τ(sj ))

T

)

]

, (13)

where t is the time when all miners start mining a new block

and τ(si) is the time needed for a block with size si to reach

consensus. In (13), the first and second terms represent the

probability for miner i to first solve the puzzle based on its

block, for this block to be the first one reaching the consensus

across the network, respectively. (13) implies that the strategy

of mining a large block may have positive externalities to other

miners in the network. By analyzing the Nash equilibrium of

the non-cooperative mining game with two miners, the author

of [133] shows an interesting result, namely, the miner with

higher computational power will prefer blocks of larger sizes.

Meanwhile, the author also discusses the scenarios in which

the Nash equilibrium is a breaking point, i.e., miners adopt the

strategy of including no transaction in their proposed blocks.

The studies in [98] and [133] essentially assume that the

mining process is synchronized and all miners honestly follow

the rules of block/transaction propagation in Nakamoto proto-

cols. However, such assumptions may not be met in practical

scenarios. Thus, related strategies may not be the miners’ best

response and further investigation is needed on this topic.

C. Rational Mining and Exploitation of Nakamoto Protocols

The discussions on the incentive compatibility of Nakamoto

protocols and the strategies of resource investment lead to

the following question: is it possible for a rational miner to

exploit the vulnerability of Nakamoto Protocols and find a

strategy leading to the reward more than that in proportion to

the devoted resources? In this section, we will further devote

our survey on the existing analysis of this problem.

1) Selfish Mining Strategy: The study in [61] shows that

selfish miners may get higher payoffs by violating the informa-

tion propagation protocols and postponing their mined blocks.

Specifically, a selfish miner may hold its newly discovered

block and continue mining on this block secretly. Thereby, the

selfish miner exploits the inherent block forking phenomenon

of Nakamoto protocols. In this case, honest miners in the

network continue their mining based on the publicly known

view of the blockchain, while the selfish miners mine on their

private branches. If a selfish miner discovers more blocks in

the same time interval, it will develop a private longer branch

of the blockchain. When the length of the public chain known

by honest miners approaches that of the selfish miner’s private

chain, the selfish miner will reveal its private chain to the

network. According to the longest-chain rule, the honest nodes

will discard the public chain immediately when they learn the

longer view of the chain from the selfish miner. Such a strategy

of intentionally forking results in the situation of wasted

computation by the honest miners, while the revenue of the

selfish miner can be significantly higher than strictly following

the block revealing protocol. More seriously, if selfish miners
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Figure 13. Blockchain state transition in the presence of a selfish pool
(adapted from [61]).

collude and form a selfish mining pool with a sufficiently large

amount of computational power, other rational miners will be

forced to join the selfish mining pool, which can devastate the

blockchain network [61].

In [61], the authors introduce an approach based on the

Markov chain model to analyze the behavior as well as

performance of a selfish mining pool. Figure 13 illustrates

the progress of the blockchain as a state machine. The states

of the system, i.e., the numbers in the circles represent the

lead of the selfish pool in terms of the difference in block

number between the private branch and the public branch. In

Figure 13, state 0 is the original state when the selfish pool

has the same view as the public chain. State 0′ indicates that

two branches of the same length are published in the network

by the selfish pool and the honest miners, respectively. The

transitions in Figure 13 correspond to the mining event, i.e.,

a new block is mined either by the selfish pool or the honest

miners. α in Figure 13 represents the computational power of

the selfish mining pool. Note that the transition from state 0
to state 0′ depends on not only the computational power of

the selfish pool, but also the fraction, i.e., µ of honest miners

that mine on the selfish pool’s branch. In [61], the analysis on

the steady state probability of the Markov chain leads to the

following two important observations:

• For a given µ, a selfish pool of size α obtains a revenue

larger than its relative size in the range of 1−µ
3−2µ < α < 1

2 .

• A threshold on the selfish-pool size exists such that each

pool member’s revenue increases with the pool size.

Extended from [61], the study in [134] introduces a new

mining strategy known as the stubborn mining strategy, which

is supposed to outperform the typical selfish mining strategy.

The key idea behind the stubborn mining strategy is that the

selfish miner is stubborn and may only publish part of the

private blocks even when it loses the lead to the honest nodes.

As shown in Figure 14, the major difference between the two

selfish strategies lies in how the selfish miner publishes the

private blocks. For example, at state 2, the typical selfish miner

will immediately publish all the private blocks once the lead

to the honest miners decreases by one block (see Figure 13).

Then, the system transits to state 0. In contrast, every time

when the honest miners mine a new block, the stubborn miner

will stubbornly reveal one block of the private chain, even

by doing so it will lose the lead. Simulations in [61] show

that stubborn mining achieves up to 13.94% higher gains than

selfish mining strategy.

Furthermore, the study in [134] also introduces another two

extensions of the stubborn mining strategy, namely, the Equal-

Fork Stubborn (EFS) and the Trail Stubborn (TS) mining

strategies (see Figure 15). In Figure 15, state -1 indicates that
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Figure 14. Lead-stubborn mining. The black and purple transitions together
define the selfish mining state machine. The black and green transitions define
the stage machine of lead-stubborn mining (adapted from [134]).
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transitions denote selfish mining. Black and green transitions denote lead-
stubborn mining. Black and blue transitions denote Equal-Fork stubborn
mining. Black and brown transitions denote Trail-stubborn mining (adapted
from [134]).

the public chain is one block longer than the private chain.

As indicated by the transitions from other states to state -1,

the TS miner is more stubborn and keeps mining on the secret

branch even when it is one block behind the public chain. From

state -1, when the TS miner finds one new block ahead of the

honest miners, the system will transit to state 0
′′

. Namely, the

private chain catches up with the public chain and the block

numbers on both chains are equal. In contrast, if the honest

miners find a new block ahead of the ST miner, the system

transits to state 0. Namely, the ST miner starts to mine new

blocks based on the public chain. Here, the difference between

state 0
′′

and state 0′ lies in that only the ST miner knows the

existence of the private chain in state 0
′′

, while in state 0′ the

honest miners can freely choose to mine on one of the two

chains. The comparisons between the three stubborn mining

strategies are given in Figure 15. Simulations in [134] show

that stubborn mining strategies can improve the profit by up to

25% than the original selfish mining strategy proposed in [61].

The author in [135] studies the impact of transaction fees on

selfish mining strategies in the Bitcoin network. Note that due

to the inherent design of the token issuing scheme in Bitcoin,

the constant mining reward of each block halves every time

when a fixed interval of blocks, i.e., every 210,000 blocks, is

generated. Then, it is natural to increase the transaction fee

to compensate for the mining cost of the consensus nodes.

The arbitrary levels of transaction fees lead to a situation

where some hidden blocks may have very high values. As

a result, selfish miners want to publish it immediately due

to the risk of orphaning. Hence, in the revised Markov chain

model for selfish mining in Figure 16, the author introduces

a new state 0
′′

. State 0
′′

is almost identical to state 0, except
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Figure 16. Improved Markov model for selfish mining with transaction fees
(adapted from [135]).

that, if the selfish miner mines on the next block in state 0
′′

,

it will immediately publish that block instead of holding it.

Compared with the original selfish mining model in Figure 13,

state 0 transits to state 1 with probability α(1 − e−β) and to

state 0
′′

with probability αe−β , where β is the size of the

mining block. The new factor β is introduced to model the

impact of transaction fees on the miner’s decisions. With the

revised transition probability, if the selfish miner finds a block

of high value in state 0, it may publish the block (i.e., transiting

to state 0′′) instead of holding it (i.e., transiting to state 1).

The analysis in [135] shows that this improved selfish mining

strategy leads to positive profit for all miners regardless of

their hashrates.

From the aforementioned Markov models, we note that

the selfish miner may adopt various policies by choosing to

release an arbitrary number of block in each state. In [136]–

[138], a Markov Decision Process (MDP) model is proposed to

generalize such a process of policy derivation. As an example,

the study in [136] considers the honest miners as non-adaptive

players following the Nakamoto protocol. Then, the problem

of searching optimal selfish-mining strategy can be modeled

as a single-player MDP. Four actions are considered to control

the state transitions in the MDP:

• Adopt: the selfish miner accepts the honest network’s

chain and all private blocks are discarded;

• Override: when taking the lead, the selfish miner pub-

lishes its private blocks such that the honest network

discards its current view;

• Match: the selfish miner publishes a conflicting branch

of the same height. A fraction of the honest network will

fork on this branch;

• Wait: the selfish miner does not publish new blocks and

keeps working on its private branch.

The state the MDP is defined by the difference in block lengths

between the selfish miner and the honest network as well as

the situation of computation forking among the honest miners.

By controlling the maximum difference in block lengths, it

is possible to obtain a finite-state MDP. Using standard MDP

solution techniques, an ǫ-optimal policy for selfish mining can

be obtained based on such a truncated-state MDP.

In [139], the authors consider a similar mining competition

between a selfish mining pool and the honest nodes. The study

in [139] extends the model of selfish mining by considering

the propagation delay between the selfish mining pool and the

honest community. The delay is assumed to be exponentially

distributed with rate µ. The block-mining Markov model

in [139] adopts a 2-dimensional state of (k, l), which denotes

the length of blocks built by the pool and the community upon

the common prefix blocks, respectively. Let λ1 and λ2 denote

the block-arrival rate for the pool and the community. The

authors then derive the following transition rates of the block

mining system:

q
(

(k, l), (k + 1, l)
)

=λ1, k ≥ 0, l ≥ 0,

q
(

(k, l), (k, l + 1)
)

=λ2, k ≥ 0, l ≥ 0,

q
(

(k, l), (0, 0)
)

=µ, k < l,

q
(

(k, k − 1), (0, 0)
)

=µ, k ≥ 2,

q
(

(k, l), (k′, l′)
)

=0, otherwise.

(14)

Based on this transition map, the authors in [139] propose to

detect selfish mining behaviors by monitoring the proportion

of orphaned blocks. Specifically, if there is a significant

increase in the fraction of orphaned blocks, it is highly possible

that selfish mining exists in the network.

In [140], the authors adopt a more general assumption of

multiple selfish miners in a Bayesian game-based formula-

tion16. In the considered game, miners decide on whether to

report a new block (R), i.e., to mine honestly, or not (NR), i.e.,

to mine selfishly. When a miner makes a decision, it does not

know whether it is the real leader of the mining competition,

or whether some other miners have secretly started mining

on their private blocks. To ease the analysis of this mining

game with incomplete information, the authors assume that

a miner always reports when it finds two successive blocks.

With this extra assumption, a decision tree can be constructed

(see Figure 17), and the backward induction approach is

adopted to find the miners’ equilibrium strategies. Figure 17

presents the decision tree in a case of three miners. In the

presented subgame, miner 1 believes that it is the real leader

of the mining competition. Here, let hi denote the normalized

computational power of miner i, and µi(hi) denote miner i’s
belief of being the leader of the puzzle solution competition.

From the decision tree and following the Bayesian rule, we can

obtain the information about the states, transition probabilities,

and expected payoffs after miner 1 takes the action of NR. The

authors provide the condition on the fraction of computational

power for action NR to become the optimal mining strategy.

2) Block Withholding in Pool-Based Mining: Block with-

holding (BWH) is a mining strategy used by selfish miners

to increase their revenues through diminishing the winning

probability of honest miners in mining pools [142], [143].

In [143], the authors study the impact of BWH on the Bitcoin

network. It is assumed that a selfish miner is able to split

the computational power into different mining pools. It may

spend most of its computational power to honestly mine on one

pool, and use the rest computational power to perform BWH

on the other pools. The mining pools are supposed to adopt

the pay-per-share protocol [66, Section 2.2]. In the victim

mining pools, the selfish miner submits all shares17 to the

pool operators except the valid puzzle solutions. Although this

16A Bayesian game [141, Chapter 4] describes the situation when players
are of incomplete information. The players’ payoffs are determined not only
by their strategies but also by their types, which they may not be fully aware
during the play.

17A share is a preimage solution for a block that meets the relaxed (i.e.,
approximated) difficulty requirement set by the pool. A miner receives its
reward in proportion to the number of shares that it submits to the pool.
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Figure 17. An illustration of the Bayesian mining game (adapted from [140]).
Miner 1 believes that its is the real leader of the puzzle solving competition
and decides to take action NR. Here α is the probability for miners to mine
on the first block when they receive two blocks in a short time.

mining strategy reduces the attacker’s revenue in the attacked

pools, it will increase the attacker’s revenue in the pool that

it chooses to mine honestly. A computational power splitting

game with multiple players is formulated in [143]. In the game,

one selfish miner adopts BWH and all the other miners mine

honestly. The selfish miner chooses which pools to attack and

how much computational power to allocate in the targeted

pools. It is shown that the attacker always gains positive reward

by mining dishonestly regardless of its mining power. This

finding implies a risk for big mining pools to dominate the

network through BWH attacks on smaller mining pools.

The study in [144] considers a more complicated case where

mining pools attack each other with BWH. The author of [144]

considers a scenario of two mining pools which attempt to

send their miners to each other to diminish their opponents.

As illustrated in Figure 18, pool P1 uses x12 out of the m1

computational power to attack pool P2. Meanwhile, pool P2

uses x21 out of the m2 computational power to attack pool

P1. Then, the revenue of each pool can be derived as follows:

R1 =
m1 − x12

m− x12 − x21
,

R2 =
m2 − x21

m− x12 − x21
,

(15)

where m is the total mining power in the blockchain network.

By [144], the revenues of the pools can be expressed as the

functions of x12 and x21:

r1(x12, x21) =
m2R1 + x12(R1 +R2)

m1m2 +m1x12 +m2x21
,

r2(x21, x12) =
m1R2 + x21(R1 +R2)

m1m2 +m1x12 +m2x21
.

(16)

Thus, by observing the attack rate of its opponent, a mining

pool can adjust its attack rate in the next round to maximize its

long-term revenue through repeated plays. The analysis of this

repeated game reveals that the game admits a unique equilib-

rium, and the pool size will be the main factor that determines

the attacking rates of each pool. A similar conclusion about

the impact of the pool size on BWH attacks between two pools

can also be found in [121].

Figure 18. Block withholding attacks between two miners.

Extended from the studies in [143], [144], it is found out

in [145] that when a mining pool performs a BWH attack

to a victim mining pool, the other mining pools will benefit

from this attack even if they do not adopt BWH. Thus, the

other pools are interested in sponsoring the attacker to launch

the BWH attack to the victim pool. Consequently, the expected

gain of the attacker will be greater than the case in [143]. This

implies that miners have more incentives to perform BWH

attacks with the Nakamoto consensus protocols.

To alleviate the impact of BWH attacks, modifications to

the Nakamoto protocol and the pool-mining protocols are

suggested in the literature. The author in [66] proposes that

the pool operator should insert mining tasks for which the

solutions are known in advance, and tag the miners that do

not submit the results. Since it is difficult to find puzzles with

expected solutions, the author suggests that some new data

fields should be added to the conventional block data structure

(see Figure 2). These fields enable the pool operator to allocate

mining tasks to its miners, but the miners are unable to know

the exact puzzle solutions. Alternatively, in [146], the authors

propose to give an extra reward to the miners that find the

valid blocks, hence reducing the revenue of selfish miners and

discouraging BWH attacks.

3) Lie-in-Wait Mining in Pools: Lie-in-wait (LIW) is a

strategic attack where a selfish miner postpones submitting

the block that it finds to a mining pool, and uses all of its

computational power resources to mine on that pool [66]. In

this case, an attacker is assumed to first split its computational

power to mine in different pools. Then, if it finds a block in

a pool, instead of submitting the block to get the reward from

the pool, the attacker holds the block, and concentrates all of

its computational power in other pools to mine on the pool

where it finds the block. However, the attacker may take a

risk by not releasing the block immediately and concentrating

all the computational resources on the target pool. The reason

is that if one of other pools finds a new block before this

block is published, the selfish miner will lose its reward as

well as suffer from the cost of mining in the target pool.

It is shown in [66] that the success of attacks follows an

exponential distribution, and the maximum expected gain of

the LIW attacker is solely determined by the pool numbers

and block interval in the network.

4) Pool Hopping Strategy: With the strategy of pool hop-

ping, the miners exploit the vulnerability of the payment

mechanism of mining pools to increase their own profits. With

the pay-per-share protocol, the number of submitted shares in

one block competition round follows a geometric distribution

with success parameter δ and mean D [66]. For I shares



Table IV
SUMMARY OF SELFISH MINING STRATEGIES AND THEIR INCURRED RISKS IN BLOCKCHAIN NETWORKS

Attacks Selfish mining Block withholding Lie-in-wait Pool hopping

References [61], [134]–[136], [139], [140] [121], [143]–[146] [66] [66]

Concept After finding a new block, After finding a new block After finding a new block in The attacker moves to

the attacker hides the block in the victim pool, the a mining pool, the attacker another pool or start mining

and continues mining on attacker discards that block holds the block and uses by himself when the

the mined block secretly. and continues mining on its all the computational power mining time at its current

block in another pool. to mine on that pool. pool reaches a threshold.

Risks A new attacker’s found block The attacker loses its The attacker can lose its There is no risk and

of can be discarded if one of reward at the victim pool reward for its mined block loss for the attacker if

attackers other miners finds a new block if it finds a new block and all computational power its mining pools use

before it finds a next new block. in this pool. at the pool it found the block. pay-per-share protocol.

Risks Lose their rewards for Lose their rewards Can lose their rewards if the Their profits will be

of their mined blocks. for blocks found block found by the attacker reduced if they are in

honest by attackers. in their mining pool is mining pools using

miners discarded from the network. pay-per-share protocol.

Suggested Modification to the mining protocol, Modification to the task assignment Modification to the task assignment Change the payment

solutions e.g., blockchain propagation protocol in pools such that protocol in pools such that method for mining pools.

method and blockchain update rule. miners do not know real miners do not know real

results of their mining tasks. results of their mining tasks.

submitted to a pool, the pool still needs D more shares on

average to mine the block. When ignoring the transaction

fees, the more shares submitted to a pool in a round, the

less each share is worth. Since a miner immediately receives

the payment for the submitted share, this implies that a share

submitted early may have a higher reward. Therefore, a selfish

miner can benefit by mining only at the early stage of a round,

and then hop to other pools to increase his revenue. The study

in [66] shows that there exists a critical point measured in

the number of submitted shares. The best strategy of a selfish

miner is to mine on a pool until this point is reached, then

hop to another pool or mine by himself.

One straightforward way to address the block hopping

problem in pay-per-share mining pools is to increase the

value of shares at the end of each round. The pool operator

may score the shares according to the elapsed time since

the beginning of each round. A share can be scored by an

exponential score function s(t) = et/δ, where t is the time

stamp of the submitted share and δ is a parameter controlling

the scoring rate of shares. With the help of share scoring, we

can handle pool hopping attacks in mining pools by decreasing

the score of shares at the beginning and increasing the score of

shares later. Such score-based method is also known as Slush’s

method and has been implemented in the mining pools such

as Slushpool [147]. In [66], other incentive mechanisms such

as pay-per-last-N-shares and payment-contract-based methods

are also sketched. However, analytical studies on these mech-

anisms are missing and their effectiveness in preventing pool

hopping attacks still remain an open issue.

V. VIRTUAL BLOCK MINING AND HYBRID CONSENSUS

MECHANISMS BEYOND PROOF OF CONCEPTS

With the consensus protocols and the related issues reviewed

in Sections III and IV, a natural question arises regarding

whether it is possible to simulate the random leader-election

process among permissionless nodes in an approach other

than under the framework of Nakamoto-like protocols. To

answer this question, we focus on the designing methodology

of the virtual-mining protocols in this section. Then, we

further introduce a category of protocol design aiming at

performance improvement by combining the properties of both

the permissionless protocols and the classical BFT protocols.

A. Proof of Stake and Virtual Mining

The concept of PoS was first proposed by Peercoin [76] as

a modified PoW scheme to reduce the energy depletion due to

exhaustive hash queries. Peercoin proposes a metric of “coin

age” to measure the miner’s stake as the product between the

held tokens and the holding time for them. Miner i solves

a PoW puzzle as in (1) with an individual difficulty D(hi).
The Peercoin kernel protocol allows a miner to consume its

“coin ages” to reduce the difficulty i.e., hi, for puzzle solution.

The public verification of the “coin ages” is done through

empirically estimating the holding time of the miner’s Unspent

Transaction Output18 (UTXO) based on the latest block on the

public chain.

By completely removing the structure of PoW-based leader

election, the protocols of pure PoS are proposed in [33], [77],

[78], [148]. To simulate a verifiable random function following

the stake distribution (see also (2)), an algorithm, follow-the-

coin (a.k.a., follow-the-satoshi), has been proposed by [78]

and widely adopted by these works19. Here, the terms “coin”

or “satoshi” are used to indicate the minimum unit of the

digital tokens carried by the blockchain. Briefly, all the tokens

in circulation are indexed, for example, between 0 and the

total number of available coins in the blockchain network. A

simplified PoS protocol can use the header of block t − 1 to

seed the follow-the-coin algorithm and determine the random

mining leader for block t. Specifically, the hash function H(·)
is queried with the header of block t−1, and the output is used

as the random token index to initialize the searching algorithm.

The algorithm traces back to the minting block (i.e., the first

coinbase transaction [33]) for that token or the UTXO account

that currently stores it [78]. Then, the creator or the holder of

the token is designated as the leader for generating block t.
To enable public verification of the block, the valid leader is

18A UTXO is a transaction output whose value has not been spent by the
receiver. It can be used as the input of a new transaction. Bitcoin-like networks
sum up all the existing UTXOs of an account to recover its balance state.

19A reference implementation in Python (see also [78]) can be found at
http://www.cs.technion.ac.il/∼ idddo/test-fts.py.

http://www.cs.technion.ac.il/~idddo/test-fts.py


required to insert in the new block its signature, which replaces

the data field “nonce” for PoW-based blockchains.

It is worth emphasizing that the pure PoS protocols do not

rely on a Poisson process-based puzzle solution competition to

simulate the random generator of the block leader. Therefore,

the ZK puzzle-solving process can be simply replaced by the

process of asymmetric key-based signing and verification, and

the proof of resource is no longer needed. For this reason, PoS

is also known as a process of “virtual mining” [4] since the

block miners do not consume any resources. In the literature,

a number of protocol proposals are claimed to be able to

(partially) achieve the same purpose. However, these protocols

either need special hardware support, e.g., Intel SGX-enabled

TEEs for proof of luck/elapsed-time/ownership [79], [149], or

are still under the framework of PoW, e.g., Proof of Burn

(PoB) [150], Proof of Stake-Velocity (PoSV) [151] and “PoS”

using coin age [76]. Strictly speaking, they cannot be con-

sidered as the real virtual mining schemes in permissionless

blockchain networks.

Compared with the PoX-based protocols, PoS keeps the

longest-chain rule but adopts an alternative approach for

simulating the verifiable random function of block-leader gen-

eration. For this reason, the same framework for analyzing the

properties of Byzantine agreements in PoW-based blockchain

networks [23] can be readily used for the quantitative analysis

of PoS protocols. For example, the investigations in [77], [152]

mathematically evaluate the properties of common prefix,

chain quality and chain growth based on the same definition in

Table II. The authors propose in [77] the “Ouroboros” proto-

col, and consider that the stakes are distributed at the genesis

block by an ideal distribution functionality. By assuming an

uncorrupted ideal sampling functionality, Ouroboros guaran-

tees that a unique leader is elected in each block generation

round following the stake distribution among the stakeholders

(see also (2)). With Ouroboros, forking no longer occurs when

all the nodes are honest. However, when adversary exists,

forking may be caused by the adversarial leader through

broadcasting multiple blocks in a single round. The study

in [77] shows that the probability for honest nodes to fork

the blockchain with a divergence of k blocks in m rounds

is no more than exp(−Ω(k) + ln(m)) under the condition of

honest majority. It is further shown that the properties of chain

growth and chain quality are also guaranteed with negligible

probability of being violated.

The studies in [78], [152] introduce the mechanism of

epoch-based committee selection, which dynamically selects a

committee of consensus nodes for block generation/validation

during an epoch (i.e., a number of rounds). Compared with

the single-leader PoS protocol, i.e., Ouroboros [77] and its

asynchronous variation [153], the committee-based PoS gears

the protocol design toward the leader-verifier framework of

traditional BFT protocols (see also Figure 6). In [78], the

scheme of Proof of Activity (PoA) is proposed with the em-

phasis that only the active stake-holding nodes get rewarded.

The PoA is featured by the design that the leader is still

elected through a standard PoW-based puzzle competition, and

is only responsible for publishing an empty block. Using the

header of this block to seed the follow-the-coin algorithm, a

committee ofN ordered stakeholders is elected and guaranteed

to be publicly verifiable. The first N − 1 stakeholders work

as the endorsers of the new empty block by signing it with

their private keys. The N -th stakeholder is responsible for

including the transactions into that block. The transaction fees

are shared among the committee members and the block miner.

In this sense, PoA can be categorized as a hybrid protocol that

integrates both PoW and PoS schemes.

In [152], the authors propose a protocol called “Snow

White”, which uses a similar scheme to select a committee

of nodes as in [78]. However, only the selected committee

members are eligible for running for the election of the block

generation leader. Under the Snow White protocol, the leader

of an epoch is elected through a competition based on repeated

preimage search with the hash function. At this stage, the

difference of Snow White from the standard PoW puzzle in

(1) is that the hash function is seeded with the time stamp

instead of an arbitrary nonce. Like PoA, Snow White also

pertains the characteristics of a hybrid protocol. The analysis

in [152] shows that the proposed protocol supports frequent

committee reconfigurations and is able to tolerate nodes that

are corrupted or offline in the committee.

The recent proposal by Ethereum, Casper [154] provides

an alternative design of PoS that is more similar to traditional

BFT protocols. The current proposal of Casper does not aim

to be an independent blockchain consensus protocol, since it

provides no approach of leader election for block proposal.

Instead, the stakeholders join the set of validators and work as

the peer nodes in a BFT protocol. The validators can broadcast

a vote message specifying which block in the blockchain is

to be finalized. The validator’s vote is not associated with its

identity, but with the stake that it holds. According to [154],

Casper provides plausible liveness (instead of probabilistic

liveness with PoW) and accountable safety, which tolerate up

to 1/3 of the overall voting power (weighted by stake) that is

controlled by the Byzantine nodes.

B. Issues of Incentive Compatibility in PoS

Regarding the incentive compatibility of PoS, an informal

analysis in [77] shows that being honest is a δ-Nash equilib-

rium20 strategy when the stakes of the malicious nodes are

less than a certain threshold and the endorsers are insensitive

to transaction validation cost. However, a number of vulner-

abilities are also identified in PoS. In [155], the nothing-at-

stake attack is considered. In order to maximize the profits, a

block leader could generate conflicting blocks on all possible

forks with “nothing at stake”, since generating a PoS block

consumes no more resource than generating a signature. A

dedicated digital signature scheme is proposed to enable any

node to reveal the identity of the block leader if conflicting

blocks at the same height are found. Alternatively, a rule of

“three strikes” is proposed in [33] to blacklist the stakeholder

who is eligible for block creation but fails to properly do so for

three consecutive times. In addition, an elected mining leader

is also required to sign an auxiliary output to prove that it

20At a δ-NE, the payoff of each player is within a distance of δ > 0 from
the equilibrium payoff.



provides some extra amount tokens as the “deposit”. In case

that this node is malicious and broadcasts more than one block,

any miner among the consecutive block creation leaders can

include this output as an evidence in their block to confiscate

the attacker’s deposit. Such a scheme is specifically designed

to disincentivize block forking by the round leader.

Grinding attack is another type of attacks targeting PoS [77].

With PoS, the committee or the leader is usually determined

before a round of mining starts. Then, the attacker has in-

centive to influence the leader/committee election process in

an epoch to improve its chances of being selected in the

future. When the verifiable random generator takes as input

the header of the most recent block for leader/committee

election, the attacker may test several possible block headers

with different content to improve the chance of being selected

in the future (e.g., [77], [78]). It is expected to use an unbiased,

unpredictable random generator to neutralize such a risk [77].

In practice, the protocol usually selects an existing block that

is a certain number of blocks deep to seed the random function

instead of using the current one [78], [152].

With all the aforementioned studies, a significant limit of

the existing analyses about PoS-based protocols lies in the

simplified assumption that ignores the stake trade outside the

blockchain network (e.g., at an exchange market) [156]. A

study in [157] provides a counterexample for the persistence

of PoS in such a situation. The study in [157] assumes no

liquidity constraint in a blockchain network, where nodes own

the same stake at the beginning stage. The author of [157]

considers a situation where a determined, powerful attacker

attempts to destroy the value of the blockchain by repeatedly

buying the stake from each of the other nodes at a fixed

price. After taking into account the belief of the nodes that

the attacker will buy more tokens, the interaction between

the attackers and the stakeholders is modeled as a Bayesian

repeated game. The study concludes that the success of the

attack depends on two factors, namely, the attacker’s valuation

of the event “destroying the blockchain” and the profit (e.g.,

monetary interest) that the nodes can obtain from holding the

stake. When the former factor is large and the latter is small,

the nodes in the network will end up in a competition to sell

their stakes to the attackers. As a result, the blockchain can

be destroyed at no cost.

C. Hybrid Consensus Protocols

Despite the unique characteristics of permissionless con-

sensus protocols, public blockchain networks are known to be

limited in performance (e.g., transaction throughput) due to the

scalability-performance tradeoff [18]. To boost permissionless

consensus without undermining the inherent features such as

scalability, a plausible approach is to combine a permissionless

consensus mechanism (e.g., Nakamoto protocol) with a fast

permissioned consensus protocol (e.g., BFT). Following our

previous discussion (cf. PoA [78] and Casper [154]), we study

in this subsection how a standard permissionless consensus

protocol can be improved by incorporating (part of) another

consensus protocol in the blockchain networks.

In [158], the protocol “Bitcoin-NG” is proposed to extend

the PoW-based Nakamoto protocols. The prominent feature

of Bitcoin-NG is to decouple the consensus process in a

blockchain network (e.g., Bitcoin network) into two planes:

leader election and transaction serialization. To bootstrap the

transaction throughput, the protocol introduces two types of

blocks, namely, the key blocks that require a PoW puzzle

solution for leader election and the microblocks that require

no puzzle solution and are used for transaction serialization.

The time interval between two key blocks is known as an

epoch. In an epoch, the same leader is allowed to publish

microblocks with the limited rate and block size. Although

operation decoupling in Bitcoin-NG does not ensure strong

consistency, it paves the way for incorporating additional

mechanisms on the basis of standard Nakamoto protocols.

Following the methodology of [158], hybrid consensus

mechanisms atop Nakamoto protocols are proposed in [159],

[160] with the goal of providing strong consistency and

immediate finality. In [159], the “PeerCensus” protocol is

proposed by decoupling block creation and transaction com-

mitting/confirmation. PeerCensus consists of two core com-

ponents, namely, a PoW scheme named as BlockChain (BC)

and a BFT-based scheme named as Chain Agreement (CA).

With the proposed BC protocol, nodes acquire the voting right

of the CA protocol when they propose new blocks through

PoW and are approved by the committee of CA. The CA

protocol is adapted from BFT protocols such as PBFT [17]

and the Secure Group Membership Protocol (SGMP) [161].

Through the four stages of propose, pre-prepare, prepare, and

commit of BFT protocols (cf. Figure 6), CA designates the

miner of the newest block in the chain as the leader for the

next block proposal. The leader proposes one from the multiple

candidate blocks obtained in BC. The peer nodes in the com-

mittee extend the pre-prepare stage with an operation of block

validation. The design of PeerCensus ensures that committing

transactions (i.e., CA) is independent of block generation (i.e.,

BC). Therefore, no forking occurs in the condition of honest

majority and strong consistency is guaranteed.

In [160], a hybrid consensus protocol is proposed by com-

bining the data framework of two-type blocks in Bitcoin-

NG and the hybrid PoW-BFT design in PeerCensus. As in

PeerCensus, the Nakamoto protocol is used to construct a

“snailchain”, which is allowed to commit transactions from

a specific mempool of outstanding transactions known as the

“snailpool”. Following the quantitative analysis of the common

prefix blocks in a chain in [23], only a fixed number of

miners whose recently minted blocks are a certain number of

blocks deep in the chain can be used to form the committee

for the BFT protocol. In contrast to PeerCensus, the BFT

committee of miners in the proposed protocol has no influence

on how the next block on the snailchain is determined.

Instead, it is responsible for committing transactions from

an independent mempool known as the “txpool”. For this

reason, the transactions approved by the BFT protocol are

committed off the snailchain without relying on any mining

mechanism. In this sense, these transactions can be considered

similar to those in the microblocks of Bitcoin-NG. The hybrid

consensus protocol in [160] explicitly addresses the problem

of BFT-committee scalability in PeerCensus and provides a

secured (with theoretical proof) consensus property of imme-



Figure 19. Illustration of BFT-committee formation with weighted voting
power. Valid weights are only credited to the miners of the blocks in the
sliding window (adapted from [162]).

diate finality. Namely, the transaction confirmation time from

the txpool only depends on the network’s actual propagation

delay. The method of using Nakamoto protocols to select

nodes into a BFT committee is also known as the proof of

membership mechanism [162]. A sliding-window mechanism

is proposed in [162] to generalize the mechanisms of dynamic

BFT-committee selection in [159], [160]. As illustrated in

Figure 19, the BFT committee is maintained by a fixed-size

sliding window over the PoW-based blockchain. The sliding

window moves forward along the blockchain as new blocks

are appended/confirmed. Consensus nodes minting multiple

blocks in the window are allowed to create the same number

of pseudo-identities in the BFT consensus process to gain the

proportional voting power.

For hybrid consensus using BFT protocols to guaran-

tee strong consistency, a natural thinking is to replace the

Nakamoto protocols with virtual mining (e.g., PoS) for se-

lecting the leader or committee in BFT-consensus processes.

A typical example for such an approach can be found in

the “Tendermint” protocol [163], where a node joins the

BFT committee of block validators by posting a bond-deposit

transaction. The validator no longer needs to prove its member-

ship by competing for the PoW-puzzle solution. Alternatively,

its voting power is equal to the amount of stake measured

in bonded tokens. Meanwhile, instead of randomly electing

the leader of block proposal in the committee (cf. [158]),

Tendermint adopts a round-robin scheme to designate the

leader in the committee. The similar design can be found

in a number of recent proposals such as Proof of Authority

(PoAu) [164] and Delegated Proof of Stake (DPoS) [165].

To generalize the mechanisms of BFT-committee selection

based on virtual mining, the authors in [166] further propose

a consensus protocol called “Algorand”. Like the other hybrid

protocols, Algorand relies on BFT algorithms for commit-

ting transactions. It assumes a verifiable random function

to generate a publicly verifiable BFT-committee of random

nodes, just as in [78]. The probability for a node to be

selected in the committee is in proportion to the ratio between

its own stake and the overall tokens in the network. For

leader election, Algorand allows multiple nodes to propose

new blocks. Subsequently, an order of the block proposals is

obtained through hashing the random function output with the

nodes’ identities specified by their stake. Only the proposal

with the highest priority will be propagated across the network.

Figure 20. Illustration of performance and scalability of different consensus
protocol families (see also the discussion in [18]).

In Table V, we provide a summary of the virtual-mining

mechanisms and the hybrid consensus protocols discussed in

this section.

VI. RELAXED AND PARALLEL CONSENSUS PROTOCOLS

FOR PERFORMANCE SCALABILITY

So far, we have surveyed the design methodologies of

various consensus protocols, especially for permissionless

blockchains. As our discussion indicates, the BFT-based con-

sensus mechanisms achieve high transaction throughput with

immediate finality at the cost of high message complexity.

Thus, they are restricted to small numbers of replicas and offer

limited network scalability in terms of the number of consen-

sus nodes. In contrast, the permissionless protocols surveyed

in Sections III and V provide good network scalability with

low message complexity. However, most of the Nakamoto-like

protocols (except the hybrid protocols guaranteeing immediate

finality [159], [160]) provide only probabilistic consensus

finality. As a result, consistency of replicas across the entire

network (cf. the consistency condition for the PoW-based

protocol in (8)) is maintained at the cost of low transaction

throughput and high latency. Figure 20 provides a descrip-

tive illustration of the scalability levels of different protocol

families with respect to both performance and network size.

For the protocols surveyed in our previous sections, network

scalability and transaction throughput are generally considered

as two performance indices that can only be attained at the cost

of each other. In this section, we aim to review the solutions

that scale out the throughput of a permissionless blockchain

as the size of the network increases.

A. Off-chain and Side-chain Techniques

For cryptocurrencies, one popular and straightforward ap-

proach to throughput enhancement is to adjust the parameters,

e.g., the block size and confirmation time in Nakamoto-like

protocols. A typical example of this approach can be found in

the Segregated Witness proposal (SegWit) [167] for Bitcoin

soft fork, which lifted the block-size limit from 1MB to 4MB.

However, the study in [95] points out that such a reparameter-

ization approach is constrained by the network’s bandwidth

(e.g., for block size) as well as the blockchain’s security

requirement (e.g., confirmation time). Thus, such an approach

does not really scale out the throughput as the network size

increases. With the emphasis on compatibility to the existing

consensus protocol or network realization, alternative ap-

proaches, e.g., the Lightning network [168], that aim to lower



Table V
SUMMARY OF VIRTUAL MINING AND HYBRID CONSENSUS PROTOCOLS FOR PERMISSIONLESS BLOCKCHAINS

Protocol Name
Virtual

Mining

Hybrid

Consensus

Simulating Leader

Election with

Rule of

Longest Chain

Decoupling Block

Proposal from

Transaction Commitment

Featured Consensus

Properties

Proof of stake [33],

[77], [148]

Yes No Verifiable random func-

tion, e.g., follow-the-coin

Yes N/A No resource consumption

Proof of luck,

elapsed-time and

ownership [79], [149]

Yes No Trusted random function

implemented by Intel-

SGX-protected enclave

Yes N/A No resource consumption.

Special hardware support is

needed

Proof of burn [150] Partially No PoW puzzle competition Yes N/A Reduced resource consump-

tion

Proof of stake-

velocity [151]

Partially No PoW puzzle competition Yes N/A Reduced resource consump-

tion

Snow White [152] Partially PoS-PoW Modified preimage

search with the hash

function

Yes N/A Robust consensus through re-

configurable PoS committee

Proof of activity [78] Partially PoW-PoS PoW puzzle competition

for empty block proposal

Yes Transactions are commit-

ted by a random group of

stakeholders

Higher cost for attackers to

compromise the network con-

sensus than PoW/PoS

Casper [154] No PoW-PoS PoW puzzle competition Yes N/A Validators use BFT protocols

to anchor checkpoint blocks

in the block tree

Bitcoin-NG [158] No Partially PoW puzzle competition Yes Proposals of microblocks

do not need PoW solu-

tions

Leader election is only per-

formed at key blocks

PeerCensus [159] No PoW-BFT PoW puzzle competition N/A Yes, Blocks are commit-

ted by BFT committees

Strong consistency without

blockchain forking

Hybrid consensus pro-

tocol [160]

No PoW-BFT PoW-puzzle competition

in the snailchain

Yes Partially, only the trans-

actions in txpools are

committed following BFT

protocols

Immediate finality

Tendermint [163],

Proof of authority [164]

and delegated proof of

stake [165]

Yes PoS-BFT Verifiable random

function or deterministic

mechanism

N/A Yes, following typical

BFT protocols

Deterministic consensus prop-

erties

Algorand [166] Yes PoS-BFT Verifiable random func-

tion

N/A Yes, following typical

BFT protocols

Safety and liveness are

guaranteed under strong

synchrony

the frequency of global block validation/synchronization, are

proposed by the development communities, specifically for

value transfer networks.

The Lightning network [168] and its variations such as Blind

Off-chain Lightweight Transactions (Bolt) [169] and the TEE-

based Teechain [170] introduce the concept of (bidirectional)

micro-payment channels between two nodes via untrusted in-

termediary relays. Specifically, the payment channels are real-

ized as logical channels overlaying on the existing blockchains

(e.g., on Bitcoin [168] or on ZCash [169]) and therefore do

not modify the underlying consensus protocols. The value

transfer between the two end nodes on each channel is kept

“off-chain” as a local sequence of mutually-agreed balance-

state updates, also known as commitment transactions [168].

In other words, the sequence of transactions on an established

channel are not broadcast to the entire network and kept locally

between the two end nodes as well as the intermediaries when

needed. Then, transactions of value transfer over a channel

are not confirmed as normal transactions and cannot be spend

until the “closure” of the channel. When closing the channel,

only the most recent commitment transaction is broadcast and

needs to be mined by the blockchain network. By doing so,

the requirement of validating/synchronizing every transaction

across the network is relaxed and the number of transactions

to be mined is greatly reduced, hence making the underlying

blockchain network more throughput-scalable.

Due to the lack of trust, simply relaxing the consensus re-

quirement and keeping transactions in local payment channels

will incur the risk of double spending. To address this problem,

the technique of 2-of-2 multisignature21 is enforced in the

Lightning networks and a number of specifically designed

smart contracts (i.e., scripts in Bitcoin) are introduced. To

establish a channel, a funding transaction has to be created

jointly by the end parties and broadcast to the network in

order to lock their submitted tokens in escrow. An order of

broadcast is defined by creating for each party a different

version of every subsequent commitment transaction, i.e., in

the form of a half-signed transaction containing only the

signature of the counterparty, with the same balance outputs.

An accompanying revocable transaction22 is also created to

enable updating the balance changes. It also provide a means

of revoking transactions in case a violation occurs or a waiting

time limit is reached. In normal scenarios, only the latest

commitment transaction is broadcast to close the channel.

Otherwise, by broadcasting the right version of revocable

transactions, one end node is able to provide the publicly

verifiable proof of recognizing a malicious behavior by the

counterparty, and claim all of its deposit in the funding

21An m-of-n “multisig” transaction requires the verification of a tuple of at
least m signatures for the same text from n corresponding public keys [171].

22A revocable transaction has two payout paths. If both parties of it agree,
its output can be spent immediately. Otherwise if after a certain waiting time
one or both parties do not broadcast, the fund can be redeemed. It is revoked
only when both parties agree to update with a superseding transaction.



transaction as a punishment.

Other than the off-chain schemes that aim to reduce the

amount of transactions over the network, an alternative de-

sign is to extend an existing blockchain-based value transfer

network with multiple “side-chains” [172]. A side-chain is

an independent blockchain network that validates a subset of

transactions and keeps track of the corresponding assets. Such

a design introduces parallelism into the existing network and

each side-chain is only responsible for validating a fraction of

the total amount of transactions in the network. Therefore, it

is able to increase the transaction throughput by adding more

side-chains. As in the off-chain techniques, side-chains do not

modify existing consensus protocols. Instead, the fundamental

goal is to enable bidirectional atomic value transfer between

side-chains. More specifically, any value transaction between

side-chains is either completely confirmed by both side-chains

or not at all. Meanwhile, the value carried by the transaction

can be imported from and returned to a side-chain with no risk

of double spending. To achieve such a goal (also known as

“two-way peg” in [172]), special proofs of value locking and

redeeming are needed whenever inter-chain transfer happens.

Especially, since the consensus nodes of the receiving side-

chain usually do not track the state changes of the sending

side-chain, providing a compact, non-interactive proof of

events occurring on side-chains becomes the utmost concern

of the network designers.

In [172], the Simplified Payment Verification (SPV) proof

is adopted from [1] based on the proof-of-inclusion path in

Merkle trees to provide compact proofs of value locking

for atomic transfer (cf. Figure 8). Further enhancement of

the proof is also proposed in [172] by introducing a trusted

cross-chain federation of mutually distrusting functionaries

(i.e., approving nodes). Out of the federation, the majority

vote in the form of an m-of-n multisignature is used to

replace the SPV proof for locking/redeeming a cross-chain

pay-to-contract transaction. Furthermore, an SPV proof is

accompanied by an array of block headers, whose parent is

the block containing the SPV-locked transaction on the sending

side-chain. This can be informally considered as a “proof of

PoW” shown to the receiving side-chain that the transaction

in concern is sufficiently deep in the sending side-chain and

thus safely locked (see also our discussion about (8)). In [173],

a formal primitive called Non-Interactive-Proofs-of-Proof-of-

Work (NIPoPoW) is proposed to fill the gaps of compactness

and non-interactiveness in the proposal of [172] for PoW-

based side-chain networks. To avoid tracking/validating every

block on the sending side-chain, the study in [173] proposes

to replace the linear list-based blockchains with a skiplist-like

data structure called interlink (see Figure 21 and also [174]).

As with SPV, a valid NIPoPoW of transaction confirmation

also contains an array of blocks (i.e., suffix proof) preceded

by the block in concern as a stability proof of that block in

the chain. Instead of validating the entire source side-chain,

NIPoPoW only has to include 2m blocks in expectation from

each level of the hierarchical blockchain in the proof. Here,

m is a system-determined security parameter to ensure that

for every level µ, the proof only needs to include a number of

blocks from the tail of level µ to span the last m-size suffix of

Figure 21. A graphical example of the hierarchical blockchain with levels
0, 1 and 2. A block with header bh is of level µ if bh < D(h)/2µ (see also
(1)). Besides the regular hash pointer to the previous block, a block of level µ
also maintains a list of hash pointers (interlinks) to the most recent preceding
blocks in every level µ′ such that µ′ > µ. The genesis block is defined to be
of infinite level and hence every other block has to include a pointer to it.

blocks in the higher level µ+1. Compared with a secured SPV

proof for inter-chain transaction, with NIPoPoW the number of

source-chain blocks tracked by the receiving side-chain is only

a polylogarithmic function of the source side-chain’s length.

B. Sharding for Scale-out Throughput

Inspired by the infrastructures of distributed database and

cloud, the concept of “sharding” [95] is also applied to the

blockchain networks. As in side-chain networks, the approach

of sharding partitions the global blockchain state into parallel

subsets (i.e., shards), and each shard is maintained by a sub-

group (i.e., committee) of nodes instead of the entire net-

work. To improve the transaction throughput as well as retain

the open-membership nature of permissionless blockchains,

multiple BFT committees can be constructed following a

similar procedure of the hybrid protocols (cf. Section V-C).

As a result, the sharding protocols generally face the same

challenges as in side-chain networks and hybrid consensus

protocols, i.e., in providing secured shard formation to guar-

antee permissionless decentralization and in providing cross-

shard synchronization to guarantee atomic transactions.

The study in [175] adopts the UTXO structure from Bit-

coin and proposes the “spontaneous sharding” mechanism

specifically for value transfer networks. Spontaneous sharding

introduces a level of individual (spontaneous) chains for each

node to maintain its own transactions of interest in a first-

in-first-out fashion. It keeps a globally shared main chain,

which only records the signed abstracts (i.e., header) of the

blocks on each individual chain using a BFT-based consensus

protocol. In this sense, spontaneous sharding is considered

to be a transitional design from micro-payment channels to

sharding, since it admits only the transaction-sharding process

but not the validator-sharding process. The validity of the

proposed mechanism is built upon the assumption that all

nodes in the network are rational. Namely, a node is interested

in inspecting a transaction only if it needs that transaction to

validate a subsequent transaction output that it receives. Only

the rational owner of an unspent transaction is responsible for

providing the proof to the validators (i.e., receivers). However,

due to the existence of sharded individual chain, the protocol

in [175] faces an unresolved problem of lacking compact proof

(cf. [173]), since for every proof, the validators have to trace

back to the genesis block of each related individual chain.
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Figure 22. Service oriented sharding with multi-chain structure (adapted
from [176]). PoW solution is required for generating a checkpoint. Users
are able to propose new services by posting transactions to register the
corresponding channels in a checkpoint block (see the sub-blockchain for
the “intellectual property” service).

In [176], a different approach of transaction sharding is

proposed under the name of “Aspen”. Instead of maintaining

an individual chain for each node, Aspens organizes trans-

actions into sub-blockchains (see Figure 22) based on the

type of services related to each transaction. It introduces

periodic checkpoint blocks for synchronizing sub-blockchains

(cf. the anchor points in Casper [154]). Aspen is instantiated

on Bitcoin-NG [158] and only requires the checkpoint blocks

to be generated upon PoW-puzzle solution to determine the

proposal leaders of micro-blocks in each service channel (i.e.,

sub-blockchain). To avoid designing complex proofs of cross-

chain transactions (cf. [172], [175]), Aspen does not allow

two-way transfer between channels and requires that each fund

is only spendable in a specific channel.

In [177], a different sharding protocol named “Elastico”

is proposed with the emphasis on the process of valida-

tor sharding through dynamically forming multiple BFT-

committees. Elastico organizes the transaction approving pro-

cess by epochs, and in each epoch a number of committees

are formed in parallel based on the PoW-puzzle solution in

a similar way to the proof of membership in [162]. The

study in [177] proposes a mechanism of generating distributive

epoch randomness by using one network-level BFT committee,

which determines a subset of hash values randomly provided

by its members. The committee can run any non-leader inter-

active consistency protocol, e.g., [178] to reach an agreement

on such a single set to generate the public random number.

In an epoch, the candidates of the committees have to solve

the PoW puzzle based on the public random number. Elastico

also uses the least-significant bits of the PoW solution (i.e.,

the hash value) to group the candidate nodes into different

committees. Thus, this procedure guarantees that the commit-

tees are randomly formed and unpredictable. Meanwhile, to

avoid designing complex proofs of cross-shard transactions

(cf. [175]), Elastico relies on the network-level committee to

merge the locally agreed values in each committee into a single

chain. The network-level committee first checks whether the

values received from each local committee are signed by their

majority members. If so, it merges the received values into

an ordered union and runs a similar BFT protocol to approve

the final result with signatures by the committee majority. By

limiting the burden of quadratic message complexity within

shard committees of small size, Elastico is able to achieve

roughly O(n) message complexity and provide almost linear

throughput scalability in terms of the hash power in the

network. Also, compared with the aforementioned throughput-

scalable protocols, e.g., [171], [172], [175], Elastico does not

limit itself to value transfer networks and can be applied to

generic data services with non-spendable transactions.

By enabling parallelization of both data storage and network

consensus, protocols aiming at “full sharding” are proposed

in [179], [180]. In [179], a protocol named “OmniLedger”

is designed to provide “statistically representative” shards

for permissionless transaction processing. As in [177], Om-

niLedger is built upon two levels of epoch-based Byzantine

agreement processes, with the network level being responsible

for epoch randomness generation and the shard level for

intra-committee consensus. In the network level, a global

identity blockchain is adopted and can only be extended by the

network-level leaders. Any node that wants to join a committee

has to register to this global blockchain through a Sybil-

proof identity establishment mechanism. Especially, such a

mechanism is not limited to PoW and can be replaced by other

means, e.g., PoS. At the beginning of an epoch, all the nodes

with established identities are required to run an interactive

consistency protocol by sharing with each other a “ticket”

based on a gossip protocol. The ticket is generated as the hash

value of the node’s address and the header of the identity

blockchain. The node that generates the smallest ticket will

be elected as the network-level leader. The leader is expected

to run a verifiable random function (e.g., RandHound [181])

and generate a global random string with a valid proof. Upon

reception of this random string, other registered nodes are

able to compute a permutation based on this string as well

as their own identity, and then finish the assignment of shard

committees by subdividing their results into equally-sized

buckets. In addition, OmniLedger proposes to swap gradually

in-and-out committee members per epoch. This design not

only allows bootstrapping new nodes joining the network, but

also avoids excessive message overhead and latency due to

complete shard reconstruction (cf. Elastico). In the shard level,

a committee can employ any leader-based BFT protocol (e.g.,

ByzCoin [162]) to provide intra-shard consensus.

In [180], another epoch-based, two-level-BFT protocol for

full sharding is proposed under the name “RapidChain”. In

the network level, RapidChain requires a reference BFT-

committee to run a distributed randomness generation protocol

similar to [177] and generate a public random string to

initialize the formation of shard-level committees. As in [179],

the shard-level committee reconfiguration in RapidChain only

reorganizes a subset of committee members at each epoch

to ensure operability during committee transition. At the

bootstrapping stage in a network of n nodes, the established

identity of a node is mapped to a random position in the range

[0, 1) by using the hash function. Then, with some constant k
(i.e., committee size), the range is partitioned into n/k regions,

and the shard-level committees are consequently formed based

on this region partition. At the reconfiguration stage, Rapid-

Chain defines the set of the first half shard-level committees

with more active members as the “active committee set”.

The network-level committee is responsible for assigning new

nodes into the active shard-level committees uniformly at

random. After that, it shuffles a constant number of members



from every existing committee and randomly reassign them to

other committees. On the shard level, RapidChain requires the

members of each BFT-committee to run also the distributed

randomness generation protocol and generate a local random

string. Then, the committee members compete for the leader

election through solving the standard PoW puzzle based on

the local random string. The members elect a node with the

smallest PoW solution by gossiping their votes with signatures

to each other. Then, the BFT protocol will be led by that node

to reach the intra-shard consensus for transaction commitment.

As in [175], [176], full sharding also partitions the storage of

the blockchain state into multiple shards (e.g., local ledgers).

Then, the full sharding protocols [179], [180] are characterized

by their ways of handling cross-shard transactions to guarantee

atomic transaction commitment. In [179], OmniLedger uses

UTXO to represent the client’s balance state. Therefore, a

cross-shard transaction is always associated with at least an

input shard as well as an output shard (see Figure 23(a)). Om-

niLedger adopts a lock-unlock-abort mechanism by requiring

the input shard of a cross-shard transaction to “lock” the input

first. Namely, the leader of the input shard has to provide a

proof-of-acceptance in the form of Merkel proof before the

corresponding transaction can be committed. If the transaction

is found to be invalid, the input shard creates a proof-of-

rejection in a similar form by using a designated bit to indicate

an acceptance or rejection. Even with a proof-of-acceptance,

the receiving client still cannot freely spend the UTXO. The

receiver is required to send an unlock-to-commit transaction

with that proof to the output-shard committee. Until the output

shard validates this special transaction and includes it into the

new block, the receiver is able to spend the UTXO of the

original transaction.

In [180], RapidChain proposes a different approach of

committing cross-shard transaction, which does not require

a receiver to collect proofs from the input shards. Instead,

for any input value of a transaction from a different shard,

the output-shard leader is required to create a single-in-single-

out transaction where the output is equal to the input of the

original transaction. By doing so, the output committee tries

to create a local record of the input and holds the input value

in escrow. To confirm the escrow, the output-shard leader

is responsible for sending this new transaction back to the

input-shard committee for approval. After the input committee

adds this transaction into its ledger, the output-shard leader

will create a final transaction, with the UTXO of the escrow

transaction being the input and the same outputs of the original

transaction. After the output-shard committee adds the final

transaction to its ledger, the transfer process is finished and

the corresponding UTXO becomes spendable by the receivers.

An illustrative comparison between the protocols of cross-

shard transactions in OmniLedger and RapidChain is given

by Figure 23.

C. Nonlinear Block Organization

Another approach aimed at improving the network through-

put focuses on the design of transaction data organization. As

we briefly introduce in Section II-B, instead of organizing
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Figure 23. Atomic cross-shard transaction protocols in (a) OmniLedger [179]
and (b) RapidChain [180]. In the two protocols, different parties are respon-
sible for collecting input-shard approvals for committing transactions.

block in a linear list, the approaches of nonlinear block

organization are able to (partially) address the scalability

problem by changing the mechanism of transaction validation

in the consensus layer. The earliest scheme of nonlinear block

organization can be found in [25] as the protocol of Greedy

Heaviest-Observed Sub-Tree (GHOST). In a GHOST-based

network, nodes store all the locally observed valid blocks

and consequently maintain a tree of their respective forks.

As an alternative to the longest-chain rule, GHOST extends

the canonical chain of PoW-generated blocks by the block

with the heaviest subtree, i.e., the subtree with the largest

number of tree-nodes (see Figure 24). In [38], a unified

security description of GHOST and the Nakamoto protocol is

established by slightly modifying the K-consistency property

in [94] (see also Section III-B) into a new property of K-

dominance, which measures the discrepancy in the weights

between sibling subtrees. As pointed out in [25], the rate of

main-chain growth of GHOST is lower than that of the longest-

chain rule when the block generation rate and the network

delay are the same. However, since GHOST relaxes the block-

generation constraint for the same level of security requirement

against 51% attacks, it is able to shorten safely the waiting

time for block confirmation and thus has a limited ability of

improving the network throughput.

A further step toward nonlinear block organization is pro-

posed in [182], where blocks are ordered in a DAG and each

block is allowed to have multiple predecessors (cf. single

parent block in GHOST [25]). Namely, the header of each

block may contain more than one pointer to the precedent

blocks to indicate the pairwise order. The DAG-based protocol

in [182] also selects a main chain (cf. GHOST) of linear order

from the DAG. To form such a linear order on the blocks at the

current view, a node runs for each block a postorder traversal



Figure 24. A tree of blocks. Instead of choosing the longest chain (Blocks
1A to 5A), Block 1B with a subtree weight 11 is selected into the main chain.
Consequently, Blocks 2C (with a subtree weight 5) and 3D (with a subtree
weight 2) are selected into the main chain of the current view.

algorithm on the DAG and checks if the transactions in the

current block are consistent with the visited one. Compared

with the longest-chain rule or GHOST, the DAG-based rule of

chain expansion allows the non-conflicting, off-chain blocks to

be selectively included into the ledger view. For example, from

the perspective of a main-chain block, its off-chain descendant

blocks can still be included into the ledger as long as they are

not far away from the main chain as both predecessors and

descendants. Then, by including the discarded (i.e., off-chain)

blocks, the proposed protocol possesses a limited ability of

increasing the network throughput.

To further improve the network throughput, the protocol

proposed in [182] is later extended to the protocol “SPEC-

TRE” in [26]. SPECTRE relaxes the requirement on node

synchronization, and allows blocks to concurrently grow on

the ledger without specifying a main branch. To define the rule

of ledger extension, SPECTRE introduces a virtual pairwise

voting mechanism to determine the order of any pairwise

blocks in the DAG. In brief, each block in the DAG contributes

to the vote on the relative order of not only its preceding blocks

but also its descendant blocks according to the topology of the

DAG. Compared with the main chain-based rules, SPECTRE

is shown to be robust to block-withholding attacks (cf. [143]).

The reason is that with vote-based pairwise ordering, secret

chains published by the attackers cannot win the votes by

existing blocks from the honest nodes due to the lack of

connections in the DAG (see Figure 25). Without undermining

the network security, i.e., increasing the transaction reversal

probability, SPECTRE admits faster commitment time as the

block creation process is accelerated. By (4), the more nodes

in the network, the higher the expected block generation rate is

given a fixed PoW difficulty. As indicated by [26], for a target

transaction-reversal probability, a known propagation delay

and a fixed PoW-difficulty level, SPECTRE is able to increase

the transaction throughput as the network size increases.

Based on the aforementioned protocols, a number of DAG-

based schemes have been proposed with a variety of emphasis

on different performance indeces. For example, Byteball [183]

adopts the concept of main chain/tree (see also [25], [38],

[182]) but uses authenticated witnessing nodes to determine

the partial order of blocks at each user’s view. Another

DAG-based protocol, i.e., Conflux [184] modifies GHOST

by adding in each new block the reference pointers to all

existing blocks without descendants at the current DAG view.

Figure 25. An example of the virtual voting procedure on the order of blocks
X and Y in a DAG with block withholding attacks. Blocks (voters) in the
descendant set of X will vote X < Y (i.e., X preceding Y ) since they only
see X . Blocks 0-4 will vote X < Y since they see more X < Y votes in
their sets of descendant block. Blocks 8-10 which have both X and Y as the
ancestors run an recursive query to their predecessor sets and use the majority
voting results as their own votes.

Compared with [25], [182], Conflux is claimed to provide

100% utilization of the off-chain blocks and thus is able

to improve the network scalability. Furthermore, a similar

protocol to SPECTRE is proposed in [24], [185] as IoTA

Tangle. The major difference of IoTA Tangle lies in that it

discards the data structure of block as a package of transac-

tions. Instead, it requires nodes to publish directly transactions

onto the transaction DAG. A node is enforced by the protocol

to approve/reference more than two transactions by linking

their hash values in the header of its new transaction to

expand the DAG. By doing so, the node expects to accumulate

sufficient weight (cf. votes on the partial orders in SPECTRE)

for this transaction from the future transactions23 by other

nodes to finally confirm it. So far, complete theoretical proof

of the liveness property of IoTA Tangle is still an open

issue [24], [185]. However, the study in [185] implies that, if

self-interested nodes have the same capability of information

acquisition and transaction generation as the other nodes, they

will possibly reach an “almost symmetric” Nash equilibrium.

Namely, they will be forced to cooperate with the network by

choosing the default parent-selection strategy followed by the

honest nodes.

VII. EMERGING APPLICATIONS AND RESEARCH ISSUES

OF BLOCKCHAINS WITH PUBLIC CONSENSUS

In the previous sections, we have provided an in-depth

survey on three main categories of permissionless consensus

protocols for blockchain networks, namely, the Nakamoto-like

protocol based on PoX puzzles, the virtual mining and hybrid

protocols and the emerging open-access protocols emphasizing

the scale-out performance. On top of the consensus provided

by these protocols, the blockchain is able to fully exert its

functionalities such as smart contracts for a wide range of

applications. In general, we can divide the studies on the

emerging blockchain-based applications into two categories:

the service provision atop the blockchain consensus layer and

the consensus provision to existing blockchain frameworks.

23As in SPECTRE, an IoTA transaction (indirectly) approves/references an
earlier transaction if it can reach that transaction via directed links.



The former category of studies usually exploit special char-

acteristics of blockchain networks, e.g., self-organization and

data security, to guarantee target features in their respective

services. In contrast, the latter emphasizes the P2P or decen-

tralized characteristics of blockchain networks. Hence, most

of them focus on rational nodes’ strategies or the overlaid

incentive mechanism design of resources allocation in the con-

sensus process. In this section, we provide an extensive review

on the properties of blockchain networks and the applications

exerting mutual influence on each other. Meanwhile, a series

of open research issues are also identified.

A. General-Purpose Data Storage

The Cambridge’s 2017 annual blockchain benchmarking

study identified that the majority of blockchains use cases are

still dominated by the capital market sectors [186]. Neverthe-

less, significant effort has recently been put into the study of

using blockchains for storage of generic data, which aims at

preserving the properties of data immutability and trackabil-

ity in a decentralized environment. A naive approach is to

“piggy-back” arbitrary data (e.g., non-transferable metadata)

onto transactions in established public blockchains [187]. For

example, in the Bitcoin network, nodes can use the special

script instruction OP RETURN to indicate that the transaction

output is unspendable and expected to be removed from the

UTXO. Then, the transaction is allowed to carry a limited

length of arbitrary data onto the chain. Typical examples

of directly storing metadata onto blockchains can be found

in asset ownership registration, e.g., Namecoin24 [188] as a

blockchain-based namespace system. Note that the direct on-

chain storage is limited by the message length and naturally

requires full replication of each data object over the network.

Then, this solution needs to be improved to lift the data-

length constraint and reduce the synchronization cost. In [189],

where a naming system is constructed on top of Namecoin,

the data storage is decoupled from the block serialization

(i.e., name registration) process. In order to achieve this, the

authors of [189] adopt a “virtualchain” to process registra-

tion/modification operations of names (e.g., domain names or

IP addresses). Only the minimal metadata, i.e., the hashes

of the name-payload pairs and state transitions are stored

on the blockchain. The third party storage is connected by

virtualchain to store the payload of arbitrary length with digital

signatures from the data owner.

The same idea of decoupling the storage layer from the

main blockchain can also be found in works such as [190]–

[192]. The studies in [190], [191] focus on data storage and

sharing for large-scale IoTs. Therein, two similar blockchain

frameworks are proposed by introducing the off-chain storage.

In brief, the data generated by IoT devices is stored in DHTs,

and only the pointer to the DHT storage address needs to

be published onto the blockchain. The DHT-based storage is

provided by an off-chain layer of decentralized DHT nodes.

Upon seeing that transactions of storing/accessing requests are

confirmed by the blockchain, the DHT nodes are responsi-

ble for accordingly storing or sending the data from/to the

24https://namecoin.org.
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Figure 26. A generic framework of using blockchains as system integrators
for self-organization. The operation flow is realized as a sequence of smart
contracts: (1) service registration/requests by the clients, (2) access/certificate
granting by the providers, (3) requesting service hosting (e.g., auction for
computation/storage offloading) by the providers, (4) peers answering (e.g.,
bidding for) the hosting requests, (5) delivery negotiation between hosting
peers and clients and (6) service completion with proofs of delivery.

legitimate IoT nodes. In [192], further discussion is provided

regarding the issue of how to control the data replication factor

in the network. Instead of using an off-chain storage layer, the

design in [192] compromises the property of decentralization

in exchange for a stronger control of replication synchroniza-

tion. In the proposed framework of blockchain-like database,

i.e., BigchainDB, P2P communication protocols are replaced

by the built-in broadcasting protocol, and a committee (i.e.,

federation) of voting nodes are designated for block validation

and ordering. Such a permissioned design shares a certain level

of similarity with the framework of HyperLedger [39]. By

doing so, it is possible for the federation nodes to control

where to store a submitted transaction and flexibly determine

the replication factor (i.e., the number of shards/replicas)

per table in the underlying distributed database. Such design

avoids the issue of full data replication over the network

and makes it possible for constructing a large-scale, high-

throughput database directly on a blockchain network.

B. Access Control and Self-Organization

The most popular design approach sees blockchains as

enabling technologies for implementing accountable and se-

cure services in a decentralized fashion. In other words,

blockchains are utilized as a decentralized intermediary for

channeling/accounting services upon demands as well as for

guaranteeing data security and confidentiality. In Figure 26,

we describe a generic framework of decentralized service

provision built upon blockchains. The most prominent feature

of this framework lies in that the interactions between different

entities in the system are all tunneled autonomously in the

form of smart contracts. Such a framework has been adopted

by a wide range of service provision systems including P2P

file sharing based on InterPlanetary File System25 (IPFS) [36],

decentralized content delivery [193], [194], access control in

telecommunication networks [37], [195] and various missions

for access and permission management, e.g., in IoTs [196]

and clouds [197]. For different task requirements, this appli-

cation framework can be expanded by including additional

entities, e.g., third-party auditors [198], as well as new opera-

tions, e.g., Hierarchical Identity Based Encryption (HIBE, see

25https://github.com/ipfs/ipfs.

https://namecoin.org
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also [199]) [200]. To provide a better idea on how this emerg-

ing framework can be shaped in recent studies, we categorize

the blockchain-based proposals for self-organization according

to the areas or context that they are applied in.

1) Access Control in Wireless Networks: In [195], the

authors propose to use blockchains for providing Identity and

Credibility Service (ICS) in cloud-centric Cognitive Radio

(CR) networks. The CR users utilize their pseudonymous

identities on the blockchain to negotiate with the network

operator, i.e., the spectrum owner, for granting opportunistic

access and settling payment. According to [195], the ICS can

be provided by either the blockchain itself or a third-party

entity registered on-chain, and the network access negotiation

is automated by smart contracts. Meanwhile, it is pointed

out in [195] that the blockchain’s consensus mechanism can

be employed for coordinating spectrum sensing among the

distributed CR users. However, it is not clear how the CR-user

consensus can be achieved on top of the ledger consensus as

with the classical methods [201] in CR networks.

In another study [202], the same authors propose to use

a permissioned blockchain to handle the network access ex-

change, i.e., the spectrum handoffs. The CR users and their

base station controller submit the information of spectrum and

network utilization as metadata onto the blockchain. Then,

the CR network responds by updating the smart contracts

and publishing the new access prices and number of network

access units allocated to each CR onto the blockchain for

execution. A similar design with more technical details can be

found in [203]. Therein, a blockchain based on the Nakamoto

protocol with its embedded tokens and smart contract layer

is adopted as a spectrum auction platform. More specifically,

multiple primary users as providers sell their unused bands

at a certain price with smart contracts and allocate them to

responding CR users when the contracts are executed upon cer-

tain conditions. It is claimed in [203] that the blockchain-based

spectrum allocation outperforms the conventional medium-

access protocols such as Aloha. However, technical details

are missing about how the issue of high transaction latency

is addressed to satisfy the CR network’s constraint due to the

timescale of small-scale fading in wireless channels.

Blockchains are also introduced into vehicular ad-hoc net-

works (VANETs) to address the issues of network volatility

due to high mobility. For Vehicles-to-Infrastructure (V2I)

communication, the study in [204] uses the Nakamoto-based

blockchain as a secure key-delivery channel to handle the

access of a moving vehicle to groups of Road Side Units

(RSUs) in different regions. By encapsulating the key infor-

mation in a blockchain transaction, the security manager of

one region is responsible for issuing the transactions to that

of the new region as well as mining the new blocks onto the

blockchain. Comparatively, the study in [205] focuses more

on the ad-hoc nature of VANETs and employs the blockchain

to collect the trustworthiness rating on messages sent to each

other by the peer vehicles. The RSUs do not only work as the

consensus nodes in the blockchain network but also work as

the decentralized storage hosting peers of the trust rating data

(cf. Figure 26). It is worth noting that in [205] the transactions

carrying vehicle reports are essentially unspendable. The RSUs

employ weighted average to the rating scores to estimate the

quality of the received reports. Then, they use the estimation

results as the difficulty parameter for PoW-based mining in

a similar manner of the Peercoin-like protocols (see also

Section V-A).

In the existing studies on blockchains-based network access

control, the study in [206] is among the few to explicitly

address the issue of high signaling latency over the blockchain

due to the adoption of Nakamoto protocols. In [206], the pro-

cess of authentication transfer for User Equipments (UEs) in a

5G ultra dense network is handled by a blockchain in a similar

way as in [202]. Instead of delegating the transaction/contract

execution process to a dedicated overlay blockchain, it is

proposed in [206] that the Access Points (APs) use the PBFT

protocol within a dynamic consensus committee to handle the

requests of authentication by UEs in the form of transactions

or smart contracts. In order to implement the PBFT protocol,

a local server center is introduced as the primary peer (i.e.,

leader) of the committee. Nevertheless, we note that any non-

leader consistency protocol can be adopted in this framework

to preserve the property of complete decentralization (see also

Section VI-B). According to [206], the PBFT-based blockchain

is able to keep the transaction delay around 100ms. Compared

with the standard Nakamoto protocols, it is more practi-

cal to deploy network control mechanisms over PBFT-based

blockchains for delay-critical tasks such as access hand-over.

However, how to find a balance between the required levels

of latency and decentralization (e.g., with hybrid consensus

protocols) still remains an open question.

2) Self-Organization and Security Enhancement under Var-

ious Network Architectures: Apart from network access con-

trol, blockchains have also been applied to various scenarios

as a decentralized platform for self-organization. As briefly

shown in Section VII-B1, blockchains can also be used

for security enhancement with its embedded cryptographic

functionalities. Typical examples for the former applications

can be found in proactive caching and Content Delivery

Networks (CDNs) [193], [194], [207]. In [194], a decentralized

CDN platform is established with the help of blockchains

among the three parties of content providers, content serving

peers and clients (cf. Figure 26). With smart contracts, the

content providers offload the tasks of content delivery to

multiple content serving peers. It is suggested in [194] that the

content providers use smart contract prices to control the file

placement on multiple serving peers according to the demand

frequency and achievable QoS at the peers. Furthermore, the

work in [193] mathematically formulates the pricing-response

interaction between the providers and the serving peers as a

potential game [141, Chapter 3.4]. Then, it designs a series

of smart contracts for automatically matching the peers to the

providers under the same CDN framework. A modified PoS

protocol is subsequently proposed to incentivize the serving

peers to work as the consensus nodes of the blockchain without

consuming significant computational power.

In [207], the authors design a blockchain-based brokering

platform for video delivery in a user-centric CDN ecosys-

tem. The proposed platform is built upon three indepen-

dent blockchains for content brokering, delivery monitoring



and delivery provisioning, respectively. The content broking

blockchain handles the content requests and matches the

clients’ requests to the providers’ offers in a series of smart

contracts among the three parties. The delivery monitoring

blockchain records proofs of delivery and finalizes the pay-

ment and refund between the providers and the clients. The

delivery provisioning blockchain provides smart contacts for

content dissemination between the providers and the serving

peers. In such a framework, the decentralized entities in the

CDN treat the blockchain as a ready-to-use service offered

by a third party. Therefore, any form of blockchains (e.g., the

permissioned HyperLedger) can be employed as long as the

requirement of transaction throughput and latency is met.

In various applications of edge/fog/cloud computing, more

and more attempts are also found to use blockchains for

providing services such as trusted auditing and secured data

delivery in addition to autonomous brokering. In [198], the

blockchain is used as a tamper-proof provenance database on

the cloud server side to record the history of the creation and

operations performed on a cloud data object. By adopting a

public blockchain, any node in the blockchain network is able

to perform data auditing. By using pseudonymous identities

on blockchains, the proposed auditing mechanism reduces

the probability that auditors can correlate the real identity

of a specific user with the operations. In other works such

as [196], [208], the blockchain is introduced into the three-

layer paradigm of edge-fog-cloud computing. In [196], the

blockchain is used as a connector to provide encrypted channel

by using the public key functionality for data delivery from

the edge devices to the fog and cloud. More specifically, the

study in [196] considers a smart video surveillance network,

where the preprocessing tasks such as object tracking are

handled at the edge devices, and the more sophisticated tasks

of data aggregation and decision making are performed in the

fog/cloud based on the data filtered at the edge. To prevent ma-

licious modification on video frames in the untrusted fog layer,

the cloud layer deploys smart contracts on the blockchain

to provide an indexing service and generate unique index

for every video frame with transactions published onto the

blockchain. The work in [208] adopts the same data-processing

flow from the edge to the cloud as in [196]. In contrast

to [196], the blockchain is used to provide automatic matching

between the data-service requests and the providers in the

cloud’s service provider pool. In this sense, the blockchain is

again used to provide the broking service as in [193], [194].

3) Trusted Broking Services in Cyber-Physical Systems: In

the context of crowdsourcing (e.g., crowdsourcing of mobile

sensors, a.k.a., crowdsensing), permissionless blockchains are

also found to be especially appropriate for providing non-

manipulable brokering services between clients (i.e., task re-

questers) and service providers (i.e., crowdsourcing workers).

In [209], a purely decentralized crowdsourcing system for

general purpose is proposed following the paradigm described

by Figure 26. In the proposed framework, the procedures

of identity registration, task/receiving, reputation rating and

reward assignment are all automated in the form of smart con-

tracts. Following the approaches described in Section VII-A,

the blockchain network delegates the data storage to an inde-

pendent storage layer and only keeps the metadata on-chain.

Similar blockchain-based frameworks are also adopted for

crowdsensing in recent studies such as [210], [211], where ad-

ditional functionalities are adopted in the blockchain networks

to address different performance requirement such as through-

put scalability [210] and anonymity enhancement [211].

In the context of IoTs, blockchain-based infrastructure is

also envisioned as a promising alternative of the centralized

one for data management, trading automation and privacy

protection. In [212], the authors introduce the micro-payment

channels (see also Section VI-A) based on a Bitcoin-like

blockchain to conduct energy trading in a decentralized smart

grid without relying on trusted third parties. In [213], a P2P

surplus-energy trading mesh of the plug-in hybrid electric

vehicles is built on a Nakamoto protocol-based blockchain.

In the proposed framework, a number of authorized nodes are

responsible for processing and recording the transactions and

an iterative double auction mechanism is deployed based on

the transactions published on the blockchain. This framework

of blockchains as a P2P trading mediator is also adopted

in [214], [215], where the PBFT protocol is used to replace the

Nakamoto protocol and form a consortium blockchain. Fur-

thermore, the mathematical tool of contract theory (see [216]

for more details) is adopted to determine the optimal prices

and requested utility in the relevant smart contracts.

C. Consensus Provision and Computation Offloading under

Nakamoto Protocols

In contrast to the studies that we review in Sections VII-A

and VII-B, another line of works focus on (decentralized)

resource allocation for consensus provision in the Nakamoto-

based blockchain networks. In other words, these studies view

the consensus in blockchain networks of a given protocol as

the goal to be achieved instead of a ready-to-use service.

Recall that the Nakamoto protocols require consumption of

certain resources in the PoW-like puzzle solution competition

for new block proposing (see also Section III). With this

property in mind, a plethora of works, e.g., [131], [132],

[217]–[220], are devoted to the studies of resource allocation

in the block mining process in exchange for monetary rewards

(i.e., mining reward in tokens) offered by the blockchain.

In [131], [218], [219], a scenario of deploying blockchains on

the mobile edge devices is considered. Due to the intensive

resource consumption for PoW solution, it is difficult to

directly migrate blockchain networks to the mobile environ-

ment [218]. Therefore, the computation offloading schemes are

proposed in these studies by either formulating the problems

in a nonlinear/binary programming framework [219] or as a

hierarchical (i.e., Stackelberg) game [131], [218].

We use [131] as an example to explain how the PoW-

work offloading process can be formulated as a conven-

tional optimization or game theoretic problem. To offload

the tasks of PoW-solution searching from mobile devices to

the edge/fog/cloud, a series of factors including transaction

transmission delay and blockchain-forking probability need

to be considered when constructing the utility model of the

mobile node at the edge. Considering that the computation



providers at the edge/fog are able to control the price of

the offered computational resource, the offloading process is

modeled in [131] as a two-stage Stackelberg game. In brief, the

cloud/fog providers act as the leader to set the resource price,

and the edge devices acts as the follower to determine the share

of resource to purchase for offloading the mining tasks. Ac-

cording to the various assumptions about the offloading scenar-

ios (e.g., multi-leader vs. single leaders), different approaches

such as nonlinear optimization formulation or best response-

based equilibrium searching are applied to each layer’s sub-

problem in the manner of backward induction [141, Chapter

3.4.2]. Extending from the basic scenarios in [131], [219],

various tools of mechanism design, e.g., auctions [132], [217],

can be further applied into the similar offloading problems for

resource allocation in the blockchain consensus process.

D. Some Open Issues and Potential Directions

In the existing literature on blockchains, a number of open

issues have been discussed regarding the non-consensus layers

in blockchains, e.g., the issues of security and privacy [20]

and quantitative analysis of smart contract performance [221].

In the following, we discuss issues and emerging research

directions that have not been covered in the surveyed works.

1) Cost of Decentralization: The properties of permission-

less blockchains such as trustlessness and self-organization

have been widely recognized as the advantage over the con-

ventional ledger/brokering systems. However, decentralization

with blockchain networks is not “at no cost”. As we have

partly discussed in Section VI, even the scalable consensus

protocols do not completely solve the problem of balancing

between the requirement of security and resource efficiency.

For instance, hwo to adaptively control the replication factor

in shards still remains an open issue.

Furthermore, consider that historical data such as spent

transactions become huge as the blockchain grows. With the

current design of append-only chains, it seems inevitable

for ordinary nodes to eventually run out of storage and for

the blockchain network to be controlled by a few powerful

nodes. Then, it is plausible to seek an approach for “pruning”

the blockchain data without undermining its immutability.

Although hard forks such as SegWit [167] can be considered

a manual pruning process, it is better expected that the out-

of-date blocks “have the right to be forgotten” [222]. Un-

fortunately, except a handful of experimental proposal [223],

[224], the issues of data pruning, e.g., how to delete obsolete

transactions and migrate UTXOs buried in the chain, also

remains an open issue.

2) Support for Secure Big-Data Computation: In the ex-

isting research, privacy concerns for blockchains are mostly

placed on the levels of identity registration and encrypted data

delivery (see Section VII-B). With more and more demands for

big-data processing in various fields [225], [226], the question

arises regarding whether it is also possible to provide on-

or off-blockchain support for secure Multi-Party Computation

(MPC). For example, hospitals may want to learn patterns for

diagnosis by using the private electronic medical records from

the patients without seeing the raw data. In such a scenario,

the existing privacy policies offered by blockchains (e.g.,

access authentication) turn out to be insufficient. This issue is

partially touched in [227] for mobile federated learning, where

each node connected to the blockchain trains on the same

structure of deep neural network with the local data. Then,

they only exchange the locally trained model for global model

aggregation [228]. Note that in [227] the blockchain is merely

used to conduct a convoy of the locally trained parameters

as in [196]. Following such design arises a natural question,

namely, how can we directly offer general-purpose, privacy-

preserving MPC on-chain (e.g., in blocking mining work) or

off-chain with decentralized providers (cf. Figure 26)?

The question above generally remains unaddressed, and

only a few works [229], [230] can be found in the literature

with limited strength for specific-purpose MPC provision.

These works are based on the framework of cryptographic

MPC techniques and allow mutually trustless parties to com-

pute a joint function directly on their encrypted inputs to

obtain the right outcome. In [229], the multi-parties store their

public-key-encrypted data on an off-chain storage plain as

in [190], while in [230] the encrypted data is stored directly

on a permissioned blockchain (e.g., HyperLedger). However,

due to the quadratic message complexity of the existing

MPC protocols [229], only a small number of computation

parties can be supported on-chain [230]. Moreover, only a

limited number of mathematical operations (e.g., polynomial

functions) are supported by the protocols, and the MPC-based

blockchain framework is still far from matured.

VIII. CONCLUSIONS

In this paper, we have provided a comprehensive survey

on the recent development of blockchain technologies, with a

specific emphasis on the designing methodologies and related

studies of permissionless, distributed consensus protocols.

We have provided in the survey a succinct overview of the

implementation stacks for blockchain networks, from where

we started our in-depth investigation into the design of con-

sensus protocols and their impact on the emerging applications

of blockchain networks. We have examined the influence

of the blockchain consensus protocols from the perspective

of three different interested parties, namely, the deployers

of blockchain networks, the consensus participants (i.e., the

consensus nodes) in the blockchain networks and the users of

blockchain networks.

We have provided a thorough review of the blockchain

consensus protocols including BFT-based protocols, Nakamoto

protocols, virtual mining and hybrid protocols, for which we

highlighted the link of permissionless consensus protocols to

the traditional Byzantine agreement protocols and their dis-

tinctive characteristics. We have also highlighted the necessity

of incentive compatibility in the protocol design, especially

for the permissionless blockchain networks. We have provided

an extensive survey on the studies regarding the incentive

mechanism embedded in the blockchain protocols. From a

game-theoretic perspective, we have also investigated their

influence on the strategy adoption of the consensus participants

in the blockchain networks.



Based on our comprehensive survey of the protocol design

and the consequent influence of the blockchain networks, we

have provided an outlook on the emerging applications of

blockchain networks in different areas. Our focus has been

put upon how traditional problems, especially in the areas of

telecommunication networks, can be reshaped with the intro-

duction of blockchain networks. This survey is expected to

serve as an efficient guideline for further understanding about

blockchain consensus mechanisms and for exploring potential

research directions that may lead to exciting outcomes in

related areas.
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